❌

Reading view

Delivering Massive Performance Leaps for Mixture of Experts Inference on NVIDIA Blackwell

As AI models continue to get smarter, people can rely on them for an expanding set of tasks. This leads usersβ€”from consumers to enterprisesβ€”to interact with...

As AI models continue to get smarter, people can rely on them for an expanding set of tasks. This leads usersβ€”from consumers to enterprisesβ€”to interact with AI more frequently, meaning that more tokens need to be generated. To serve these tokens at the lowest possible cost, AI platforms need to deliver the best possible token throughput per watt. Through extreme co-design across GPUs, CPUs…

Source

  •  

Inside the NVIDIA Rubin Platform: Six New Chips, One AI Supercomputer

AI has entered an industrial phase. What began as systems performing discrete AI model training and human-facing inference has evolved into always-on AI...

AI has entered an industrial phase. What began as systems performing discrete AI model training and human-facing inference has evolved into always-on AI factories that continuously convert power, silicon, and data into intelligence at scale. These factories now underpin applications that generate business plans, analyze markets, conduct deep research, and reason across vast bodies of…

Source

  •  

NVIDIA Blackwell Enables 3x Faster Training and Nearly 2x Training Performance Per Dollar than Previous-Gen Architecture

AI innovation continues to be driven by three scaling laws: pre-training, post-training, and test-time scaling. Training is foundational to building smarter...

AI innovation continues to be driven by three scaling laws: pre-training, post-training, and test-time scaling. Training is foundational to building smarter models, and post-trainingβ€”which can include fine-tuning, reinforcement learning, and other techniquesβ€”helps to further increase accuracy for specific tasks, as well as provide models with new capabilities like the ability to reason.

Source

  •