DCR Predicts: Can data centres become ‘good neighbours’ in 2026?
Gareth Williams, Director, UK, India, Middle East and Africa Data Centres and Technology Leader at Arup, argues that 2026 should be the turning point for designing facilities that stabilise grids, steward water, and deliver visible community benefits.
2026 marks a pivotal opportunity to transform how data centres are seen in the public eye. Much has been done to change perceptions from anonymous ‘black boxes’ into strategic assets. Now we must ensure they are seen as positive partners for local energy, water and communities.
That means designing for reciprocity: centres that not only consume, but also stabilise grids, steward scarce water, create jobs, share heat, and leave biodiversity richer than before. This is what I see in briefs for clients, planners and operators alike: putting community benefit at the heart of developments, not as an afterthought.
Energy: from load to flexible, clean, locally useful power
AI-centric workloads are driving volatile, high-density demand, making efficiency gains harder. This is forcing smarter energy strategies, from chip-level liquid cooling and rack-level heat recovery to intelligent workload management.
We will increasingly see data centres act as energy hubs, with co-located renewables, multi-hour batteries, combined heat and power systems, and grid-service participation (frequency response, demand shifting) from day one. Pilot policies already treat facilities as grid allies, including heat-reuse quotas and flexible-access contracts. Operating models will increasingly shift compute to areas with surplus wind and sun — an approach that could also route non-time-critical training to regions with surplus energy.
Baseload energy supply options will mature unevenly. Some operators are testing power purchase agreements linked to small modular reactors to accelerate capacity. Others will combine hydrogen fuel cells for peak resilience with smart microgrids and local renewables. Regardless, the key is to offer two-way benefits: better uptime for operators and measurable support for national grid stability.
Water: design for scarcity, stewardship and circularity
Cooling demand will keep rising with denser compute. This can shift demand in some cases from air to liquid solutions, but the next step is water stewardship by design: closed-loop systems, immersion cooling where appropriate, and zero-freshwater ambitions in stressed catchments.
The Climate Neutral Data Centre Pact points to a water usage efficiency trajectory from ~1.8 L/kWh to 0.4 L/kWh in water-stressed sites by 2040. This is ambitious, but achievable if we switch to non-potable sources and track upstream and downstream impacts.
Practical levers for 2026 include site-level greywater reuse, recycled/industrial ‘brackish’ water sources, rainwater harvesting with sponge landscapes, and seawater cooling at coastal hubs — where environmental permissions and biodiversity management are designed from the outset. Singapore’s Green Data Centre Roadmap shows how regulation can drive cooling tower efficiency upgrades, blowdown recycling and cycles-of-concentration improvements that cut freshwater withdrawals at scale.
Community engagement: early, transparent, beneficial
Engagement still starts too late on many projects. Flip the sequence: begin with benefits, then shape the scheme around agreed outcomes. Practical packages include renewable partnerships that share surplus power; reuse district heat; build biodiversity corridors and accessible green space; offer fibre upgrades that lift local connectivity; and provide STEM education funding and jobs for technicians and landscapers.
Community-first design de-risks approvals and earns trust. These aren’t gestures; they increase value over the life of the campus. This ‘good neighbour’ lens is the fastest way to retire the ‘black box’ image and demonstrate tangible contributions to people’s lives.
Technology: intelligent management, edge resilience, advanced cooling
AI already plays a crucial role in enhancing operations, and it’s only getting smarter. One example is Digital Realty’s collaboration with Ecolab, which identifies real-time operational inefficiencies in cooling systems and recommends improvements to conserve water.
AI-powered management will become the operating system of next-generation facilities, actively orchestrating workloads, power and cooling to maximise efficiency. Intelligent monitoring will drive automation for predictive maintenance, spotting deteriorating components early and scheduling interventions without disrupting SLAs.
At campus scale, hyperscale modular architecture (standardised power and cooling blocks with repeatable controls) will enable capacity expansion and help manage AI surges. And at rack level, advanced liquid cooling systems (direct-to-chip and rear-door heat exchangers) will integrate with smart controls to maximise performance while minimising power and water use.
Materials: low-carbon, modular, designed for circular recovery
Measuring whole-life carbon is vital to managing the sustainability of buildings and critical infrastructure, including data centres. The materials brief should be explicit: certified low-carbon or recycled steel, geopolymer concrete where feasible, and engineered timber for appropriate architectural elements and shading. Envelope design, daylighting and thoughtful material selection can cut operational and embodied impacts while improving working environments.
2026 will see increasing design for disassembly and recovery: standardised rack aisles, traceable components, and procurement that favours reclaimed metals and remanufactured cooling equipment. We should expect to link digital asset plans with physical asset lifecycle strategies, ensuring that refresh cycles trigger material recovery instead of waste.
Acceleration: scale fast, standardise what matters, customise what counts
Large, out-of-town campuses with repeatable, prefabricated/containerised solutions are the only way to match AI demand responsibly. To make this happen, owners and operators will need to standardise the backbone (power blocks, cooling modules, monitoring stacks), then customise for local energy and water contexts.
Reduced bespoke engineering means faster approvals, lower risk, and clearer community commitments (heat and water reuse, biodiversity) baked into template designs. Energy policies that treat campuses as anchor tenants and reward flexibility services will further cut delivery timelines while raising public value.
Conclusion: a systems brief
This is the year to design data centres as reciprocal systems: energy hubs that stabilise grids and disclose 24/7 clean sourcing; water stewards that minimise freshwater draw and close loops; and neighbours that fund skills, share heat, and leave landscapes better than before.
With multidisciplinary teams and a place-first brief, owners and operators can move from compliance to contribution — engineering facilities that are engines of local resilience and global compute. If we build them this way, the sector will be remembered not for what it consumed, but for what it enabled.
This article is part of our DCR Predicts 2026 series. The series has now offficially concluded, you can catch all the articles at the link below.










