Normal view

Received yesterday — 31 January 2026

Sungrow brings grid-forming PowerTitan 3.0 storage system to Europe

29 January 2026 at 16:15

Sungrow is introducing its large-scale energy storage system, PowerTitan 3.0, to Europe, featuring grid-forming capability, next-generation battery cells, DC coupling for co-located solar projects, and streamlined commissioning to accelerate deployment.

Sungrow is introducing its large-scale energy storage system, PowerTitan 3.0, to the European market. With the option to connect the battery to a central inverter on the DC side, the company is responding to strong demand for co-located solar-storage projects. The system was first presented at SNEC in Shanghai in June 2025 and has now been showcased to European developers at an event in Madrid.

The storage system is available in standard 10- and 20-foot container formats. The 20-foot version integrates a 1.78 MW power conversion system (PCS) with a 7.14 MWh battery, providing four hours of storage in a single container. A 30-foot version with roughly 12 MWh, also displayed in China, will not be offered in Europe due to logistics and transport costs, which could reduce project profitability. Larger systems in Europe can be achieved by connecting four units to form an AC block with approximately 7.2 MW of power and 28.5 MWh of capacity.

The higher energy density is enabled by new 648 Ah battery cells, with a volumetric energy density exceeding 440 Wh/L. A full liquid-cooling system and updated software maintain all cells within their optimal temperature range, reducing the system’s own energy consumption by around 10%, according to Sungrow. The company guarantees 10,000 cycles at 60% remaining capacity. State of charge is monitored at the rack level and synchronized across the system.

“We are seeing growing demand for stand-alone projects and a significant increase in co-location projects across Europe,” said Moritz Rolf, VP DACH at Sungrow. The DC coupling option is key to meeting this demand.

Paired with a PV system and Sungrow’s “1+X” central inverter, no separate PCS or medium-voltage switchgear is needed. The company estimates hardware and cabling savings for a 150 MWh project at around €1 million.

When connected on the AC side, the system includes an integrated PCS using silicon carbide MOSFETs. Maximum PCS efficiency is 99.5%, with a round-trip efficiency of 92%.

Fast commissioning

The PowerTitan 3.0 is delivered fully assembled and pre-configured. Commissioning is largely autonomous, taking about one hour per unit. A project can be connected to the grid in approximately 12 days, with no on-site parameterization required.

The system can also serve as an AC power source for plant certification tests. If a grid connection is not yet available, the battery can energize medium-voltage switchgear, inverters, and other equipment, simplifying logistics for commissioning and testing.

“Having completed the first stage of the energy transition—the expansion of renewables and their market integration—we are now entering the next phase: electrification, flexibility, and supply security,” said James Li, VP Europe of Sungrow, during a panel discussion.

Grid-forming capabilities were a central theme of the presentation. The system can provide short-circuit current with a ratio of 1.2, deliver instantaneous reserve power within five milliseconds, and contribute to harmonic attenuation, supporting grid strength and stability.

Antonio Arruebo, battery storage analyst at SolarPower Europe, highlighted the growing importance of these functions. Beyond frequency services, markets for instantaneous reserve, short-circuit current, and black-start capability are emerging across Europe. He stressed the need for early development of corresponding markets at EU and national levels, faster approval and certification processes for storage systems, and reduction of duplicate grid fees.

Key challenges

Discussions with event participants highlighted that, while the European battery storage market is developing positively overall, project financing remains a critical bottleneck. Highly leveraged projects are subject to intensive risk assessments by lenders, particularly regarding the valuation of future revenues from arbitrage and frequency markets. The long-term development of these markets is difficult to predict, directly affecting risk premiums and financing terms. Multi-bank financing structures appear to be becoming increasingly common.

From an investor perspective, the stability of revenue streams and technological risks are central. “The crucial factors are the resilience of the revenues and the likelihood of market mechanisms changing over time,” said Paula Renedo, Principal Engineer Director at Nuveen Infrastructure, during a panel discussion.

For battery storage, the balance between exposure to the stock market and contractually secured revenues is evolving. Creditworthiness of customers and technological reliability are gaining greater importance. “We look closely at proven technologies with robust operational experience, particularly regarding availability and degradation over the system’s lifespan,” Renedo added. Nuveen adopts conservative assumptions and engages external technical consultants to assess and mitigate these risks.

On pricing trends in the battery segment, and the Chinese government’s announcement requiring battery cell manufacturers to adopt “sustainable pricing,” Moritz Rolf noted that comparisons with recent photovoltaic module price trends are limited. PV modules have reached a high degree of commodification, whereas integrated large-scale storage systems involve numerous complex integration steps. As a result, prices equivalent to fractions of a cent per kilowatt, as seen in the module market, are not expected. After-sales service and local support remain critical for developers and operators. Sungrow currently employs around 800 people in Europe.

Testing fault at 100 MW battery disrupts Estonia-Finland power link

29 January 2026 at 13:09

During testing at Estonia’s 100 MW Kiisa battery park, both EstLink 1 and EstLink 2 tripped, triggering the most severe disturbance to the regional power grid since desynchronization from the Russian electricity system. As a result, nearly 1 GW of capacity was lost within seconds. The park’s owner has since publicly pointed to the battery manufacturer.

From ESS News

A disturbance in Estonia’s power system on Jan. 20 forced both EstLink interconnections between Estonia and Finland offline, cutting roughly 1,000 MW of capacity, equivalent to about 20% of the Baltic region’s winter electricity load.

The shortfall was initially covered by support from the continental European grid, as the 500 MW AC connection between Poland and Lithuania operated at double its rated capacity to compensate. Later, reserve capacity within the Baltic states was deployed.

The oscillations were triggered by a 100 MW/200 MWh battery energy storage system in Kiisa, just south of Tallinn, one of the largest battery storage systems in the Baltics. The incident occurred during final grid connection testing, which caused the DC cables to trip.

The €100 million facility, developed by Estonian company Evecon in partnership with French firms Corsica Sole and Mirova, features 54 battery containers supplied by Nidec Conversion.

To continue reading, please visit our ESS News website. 

Moonwatt brings DC-coupled, passively cooled sodium-ion tech to solar projects

29 January 2026 at 12:57

The Dutch start-up, founded by former Tesla leaders, is taking a novel approach to sodium-ion battery technology, optimizing it for integration with solar power plants. Its technology is set to be deployed for the first time in a Dutch solar-plus-storage project later this year.

From ESS News

Amsterdam-based Moonwatt has developed a new type of battery storage system based on sodium-ion NFPP chemistry, purpose-built for seamless solar hybridization. The system integrates battery enclosures with hybrid string inverters, enabling efficient DC-coupled solar-plus-storage integration.

The company gained attention in March 2025 when it raised $8.3 million in seed funding to accelerate growth. Moonwatt operates as an energy storage system integrator, designing, developing, and supplying string battery enclosures, hybrid string inverters, and battery management and site control systems, while sourcing sodium-ion cells globally.

“Initially, we’re sourcing them from Asia, but we aim to add American and European cell sourcing options as soon as they become available and create value for our customers,” Valentin Rota, co-founder and CCO of Moonwatt, said in an earlier interview with ESS News.

To continue reading, please visit our ESS News website.

Received before yesterday

US, Europe on track for 2030 solar goals despite pipeline gaps

22 January 2026 at 14:53

A report from McKinsey and Company says the relative ease of building out solar projects means the U.S and Europe are likely to meet their end-of-decade deployment targets, despite current pipeline gaps of around 205 GW and 181 GW.

The US and Europe are likely to meet their 2030 solar targets despite current project pipelines being smaller than their end-of-decade targets, according to a report from global management consulting firm McKinsey and Company.

McKinsey’s “Tracking the energy transition: where are we now?” report analyzes the pathway of solar, wind and battery energy storage system (BESS) technologies towards the 2030 deployment targets set by China, the United States and the EU-27, Norway, Switzerland and the UK in Europe.

It says the US is currently around 254 GW away from its 2030 target while Europe is around 275 GW away. In contrast, China has already more than doubled its 2030 target.

Despite the US and Europe currently lacking enough announced capacity to meet their 2030s targets, by around 205 GW and 181 GW respectively, McKinsey's analysis says they are still likely to find this additional capacity and reach their end-of-decade thresholds thanks to the ease of building out solar.

“While it is easier to track project build-out for other clean energy technologies, data visibility for solar is more limited due to individual household use and ease of build-out,” McKinsey’s report explains. “For example, a consumer can install household solar in two months. This means that the announced capacity may be underestimated in this analysis.”

Diego Hernandez Diaz, a partner at McKinsey, told pv magazine that while core markets will continue their build out, further demand growth will also occur in less saturated core markets such as Poland. “The advantage of some of these elements is that the more nascent markets can have a better economic trade off and can be built in an economically pragmatic way,” he explained.

The report does acknowledge that this growth trajectory is not guaranteed, citing supply chain risks, tariffs, shifting policy focus and growing political uncertainty as factors that can slow down progress. Hernandez Diaz added there will likely be an effect from shifting regulation across the board.

“Perhaps more importantly, however, is that beyond any regulation, what we continue to see is that if the underlying economics work, then deployment accelerates,” he stated. “All major geographies covered in the report have the underlying fundamentals to support accretive deployment of further renewable energy sources.”

The report also notes that the battery energy storage system (BESS) pipeline is growing rapidly across China, the US and Europe, but remains behind what is needed to meet 2030 targets. McKinsey estimates around an additional 123 GW is required in China, 154 GW in the US and 221 GW in Europe.

The analysts says BESS remains the dominant question mark but can be sited, permitted, constructed, and interconnected far faster than technologies such as nuclear or gas with carbon, capture, utilization and storage (CCUS) contributing to its rapid growth in recent years.

The report attributes the rapid acceleration of BESS installation to a positive business case for both large-scale operators and households when paired with solar. “Load balancing is also becoming a popular source of revenue for battery operators,” the report adds. “Planning and integrating BESS with renewable rollout is critical if 2030 net-zero targets are to be met.”

❌