Normal view

Received yesterday — 31 January 2026

Early tropical storm cuts solar in Philippines, while East Asia sees La Niña gains

30 January 2026 at 12:45

In a new weekly update for pv magazine, Solcast, a DNV company, reports that in January most of East Asia experienced normal to above-average solar irradiance, with southeastern China seeing surges due to reduced clouds and low aerosol levels under lingering La Niña effects. In contrast, the Philippines faced below-average irradiance from early Tropical Storm Nokaen, while other regional cities like Seoul, Tokyo, and Taipei recorded modest gains.

Most of East Asia recorded normal to above‑normal solar irradiance in January, as weak La Niña conditions continued to influence regional weather patterns. The largest gains were observed across southeastern China, where suppressed cloud formation and reduced aerosol-effects delivered a strong start to the year for solar operators, while unusual early tropical storm activity brought significant rainfall and irradiance losses to parts of the Philippines. With two days left in January at time of publishing, this data uses live data from 1-29 January, and forecasts for 30-31 Jan from the Solcast API.

Irradiance in southeastern China surged well above historical averages in January, with Hong Kong exceeding 25% above average. A dominant Siberian high pressure system, with temperatures in parts of Siberia more than 10 C below normal, extended into western China. The resulting northerly flow delivered drier air into southeastern China, reducing both precipitation and cloud formation. This irradiance pattern aligns with typical La Niña effects, even though the La Niña signal was weak and fading toward neutral by late January. Additionally, lower than normal aerosol levels contributed to above average irradiance in coastal parts of China.

In a continuation of the irradiance and aerosol pattern seen in 2025, many parts of China, in particular low-lying industrial areas saw significant drops in aerosol load and a corresponding increase in available irradiance. Both Hong Kong and Shanghai regions saw significantly lower winter average aerosol loads, than the historical average for winter months from 2007-2026. Whilst this supported the exceptionally high irradiance in Hong Kong through January, Shanghai recorded slightly above-average irradiance, despite experiencing a rare snowfall late in the month. By contrast, Beijing has historically lower aerosol loads, however still saw slightly below-average irradiance due to prevailing cloud levels.

Elsewhere in East Asia, irradiance levels were generally normal to above normal for this month. Seoul and Tokyo recorded irradiance 5–10% above January averages and Taipei saw gains exceeding 10%. Across the maritime continent, irradiance and precipitation anomalies were near normal.

The most significant negative irradiance anomaly in the region was associated with Tropical Storm Nokaen (Ada), which marked an unusually early start to the 2026 Pacific typhoon season. Making landfall in January—the first such occurrence since 2019— Nokaen delivered intense rainfall and heavy cloud cover to the central and northern Philippines. Daily rainfall totals reached up to 200 mm, triggering mudslides and widespread disruption. Irradiance across the northern Philippines dropped by as much as 10% below average, while the southern parts of the archipelago, spared from the worst of the storm, saw irradiance climb to 10% above average.

Solcast produces these figures by tracking clouds and aerosols at 1-2km resolution globally, using satellite data and proprietary AI/ML algorithms. This data is used to drive irradiance models, enabling Solcast to calculate irradiance at high resolution, with typical bias of less than 2%, and also cloud-tracking forecasts. This data is used by more than 350 companies managing over 300 GW of solar assets globally.

Study finds much lower-than-expected degradation in 1980s and 1990s solar modules

30 January 2026 at 12:21

Researchers at SUPSI found that six Swiss PV systems installed in the late 1980s and early 1990s show exceptionally low degradation rates of just 0.16% to 0.24% per year after more than 30 years of operation. The study shows that thermal stress, ventilation, and material design play a greater role in long-term module reliability than altitude or irradiance alone.

A research group led by Switzerland's University of Applied Sciences (SUPSI) has carried out a long-term analysis of six south-facing, grid-connected PV systems installed in Switzerland in the late 1980s and early 1990s. The researchers found that the systems’ annual power loss rates averaged 0.16% to 0.24%, significantly lower than the 0.75% to 1% per year commonly reported in the literature.

The study examined four low-altitude rooftop systems located in Möhlin (310m-VR-AM55), Tiergarten East and West in Burgdorf (533m-VR-SM55(HO)), and Burgdorf Fink (552m-BA-SM55). These installations use ventilated or building-applied rooftop configurations. The analysis also included a mid-altitude utility-scale plant in Mont-Soleil (1270m-OR-SM55) and two high-altitude, facade-mounted systems in Birg (2677m-VF-AM55) and Jungfraujoch (3462m-VF-SM75).

All systems are equipped with either ARCO AM55 modules manufactured by US-based Arco Solar, which was the world’s largest PV manufacturer with just 1 MW capacity at the time, or Siemens SM55, SM55-HO, and SM75 modules. Siemens became Arco Solar’s largest shareholder in 1990. The modules have rated power outputs between 48 W and 55 W and consist of a glass front sheet, ethylene-vinyl acetate (EVA) encapsulant layers, monocrystalline silicon cells, and a polymer backsheet laminate.

The test setup included on-site monitoring of AC and DC power output, ambient and module temperatures, and plane-of-array irradiance measured using pyranometers. Based on site conditions, the researchers classified the installations into low-, mid-, and high-altitude climate zones.

“For benchmarking purposes, two Siemens SM55 modules have been stored in a controlled indoor environment at the Photovoltaic Laboratory of the Bern University of Applied Sciences since the start of the monitoring campaign,” the researchers said. They also applied the multi-annual year-on-year (multi-YoY) method to determine system-level performance loss rates (PLR).

The results show that PLRs across all systems range from -0.12% to -0.55% per year, with an average of -0.24% to -0.16% per year, well below typical degradation rates reported for both older and modern PV systems. The researchers also found that higher-altitude systems generally exhibit higher average performance ratios and lower degradation rates than comparable low-altitude installations, despite exposure to higher irradiance and ultraviolet radiation.

The study further revealed that modules of the same nominal type but with different internal designs show markedly different degradation behaviour. Standard SM55 modules exhibited recurring solder bond failures, leading to increased series resistance and reduced fill factor. By contrast, SM55-HO modules benefited from a modified backsheet design that provides higher internal reflectance and improved long-term stability.

Overall, the findings indicate that long-term degradation in early-generation PV modules is driven primarily by thermal stress, ventilation conditions, and material design, rather than altitude or irradiance alone. Modules installed in cooler, better-ventilated environments demonstrated particularly stable performance over multiple decades.

The test results were presented in the paper “Three decades, three climates: environmental and material impacts on the long-term reliability of photovoltaic modules,” published in EES Solar.

“The study identified the bill-of-material (BOM) as the most critical factor influencing PV module longevity,” they concluded. “Despite all modules belonging to the same product family, variations in encapsulant quality, filler materials, and manufacturing processes resulted in significant differences in degradation rates. Early-generation encapsulants without UV stabilisation showed accelerated ageing, while later module designs with optimised backsheets and improved production quality demonstrated outstanding long-term stability.”

 

Sweden deploys 652 MW of solar in 2025

30 January 2026 at 11:04

Sweden deployed less solar in 2025 than the year prior despite record growth in the large-scale segment. Solar association Svensk Solenergi predicts last year was likely the bottom of Sweden's installation curve.

Sweden commissioned 652 MW of new solar last year, according to estimates from Swedish solar association Svensk Solenergi. The figure is down on the 848 MW installed in 2024 and takes cumulative capacity to around 5.4 GW.

Residential installations totaled 239 MW in 2025, a 39% year-on-year decrease. Alex Jankell, head of politics at Svensk Solenergi, told pv magazine the household market has been impacted by the removal of a tax rebate scheme as of the start of this year. He added that lower energy prices in comparison to massive hikes in 2022, higher interest rates and inflation have also impacted the market segment.

Although the residential market contracted in 2025, installations smaller than 20 kW continue to represent more than half of Sweden’s solar market, with a little over 3 GW of total capacity. There are now just over 287,000 solar power plants of less than 20 kW in Sweden, equivalent to 90% of all grid-connected solar plants.

Cumulative capacity of grid-connected solar plants

Image: Svensk Solenergi

Commercial and industrial installations reached 215 MW in 2025, down 35% year-on-year, but utility-scale installations increased, deploying a record 198 MW for 46% more than in 2024.

The large-scale segment accounted for 30% of new solar power in 2025, compared to 7% in 2024. New installations were led by Sweden’s largest solar plant to date, the 100 MW Hultsfred solar farm, and the 64 MW Ax-el solar park. Last year also saw developer Svea Solar announce plans to build eight new solar parks in Sweden with a total capacity of approximately 500 MW.

Jankell said the market is experiencing a shift to more large-scale solar, often combined with large-scale battery installations, but added that challenges remain in high costs or long waiting times for grid connections. He recommended Sweden adopt proposed changes to permitting procedures to make them quicker and more predictable.

The residential battery market is also broadening, with preliminary figures from the Swedish Tax Agency showing around 75,000 private individuals received a green reduction for battery installations in 2025, a 34% increase on the previous year.

Jankell suggested that Sweden’s solar market could be supported further by abolishing energy tax for all electricity that is produced and consumed behind the same meter and implementing proper power-tariffs which reflectively reward the ability of solar and battery installations to help the grid. He also recommended proposed proper revenue frames for Swedish grid companies that reward flexibility, and not only grid expansion.

Jankell told pv magazine more solar is likely to be installed this year than in 2025. “Given the implementation of solar demands in the Energy Performance of Buildings Directive, new permitting processes on the way, and a general deflation of PV and battery prices, we predict that 2025 is the bottom of the installation curve,” he said.

Dutch utility testing ‘silent’ residential heat pumps

30 January 2026 at 07:53

Dutch utility Eneco is testing low-noise air-to-water heat pumps from startup Whspr in around 20 homes, aiming to ease installation constraints near property boundaries. The systems reportedly achieve coefficients of performance of up to 5 and show up to 80% noise reduction in laboratory testing.

Dutch utility Eneco has begun testing an”innovative” type of air-to-water heat pump with low sound levels in residential buildings.

The company said conventional heat pumps rely on outdoor units that emit a constant hum, requiring installations several metres from property boundaries under Dutch building regulations and often forcing placement in prominent locations on terraced houses. By contrast, the “silent” heat pumps under test can be installed just 30 cm from the boundary.

“The pilot will provide insight into both ease of installation and real-world performance,” Eneco said in a statement. “The results will be used to further optimize the system, with the aim of making it widely available by the end of the summer.” The company added that around 20 homes are currently equipped with the systems to assess noise levels without “compromising residents’ everyday heating comfort.”

The heat pumps are supplied by Dutch startup Whspr. “Our 4 kW freestanding hybrid monoblock systems are designed for domestic space heating,” founder Hugo Huis in ’t Veld told pv magazine.

The unit measures 60 cm × 60 cm × 90 cm and weighs around 70 kg. “It is compact yet robust,” Huis in ’t Veld said, adding that initial measurements show efficiencies in line with the market, with coefficients of performance (COP) of between 4.5 and 5.0.

According to the manufacturer, the heat pump uses propane (R290) as its refrigerant and shows up to 80% noise reduction in laboratory testing.

Whspr also highlights ease of installation, stating that a single installer can fit and connect the unit, including the water side, in one day. A dedicated control and thermostat system has also been developed to reduce compatibility issues and simplify commissioning.

Further technical details have not yet been disclosed. “We are not at liberty to share designs at this stage, as patents are still pending,” Huis in ’t Veld said.

Eneco noted that pilot installations include both standard locations and more complex sites, such as rooftops and sheds at the end of gardens. The systems have also been installed in several rental homes owned by housing association Wooncompagnie. “Testing will continue until the end of April, after which the heat pumps will be further optimized,” the company said.

 

 

 

A closer look at Tesla’s new residential solar panels

30 January 2026 at 06:44

The new Tesla Solar Panel and mounting system pairs with the company’s inverter, Powerwall battery, EV charging and vehicles, creating an all-Tesla residential solar offering for the first time.

From pv magazine USA

In the residential solar sector, the industry has long sought the “holy grail” of vertical integration, creating a single point of contact for hardware, software, and energy management.

While Tesla has been a dominant player in storage with the Powerwall, a market leader with its inverter, and in electric vehicles, the company has historically relied on third-party solar panels.

With the launch of the Tesla Solar Panel (TSP-415 and TSP-420), the company is closing that loop. The company’s new modules, assembled at its Gigafactory in Buffalo, New York, represent a significant shift toward a proprietary, integrated ecosystem designed to solve the common rooftop challenges of shading, aesthetic clutter, and installation friction.

“This panel completes the full package of the residential energy ecosystem,” Colby Hastings, senior director, Tesla Energy, told pv magazine USA. “It is based on our long history of innovation and engineering when it comes to solar.”

Domestic manufacturing

Tesla said the new modules are assembled at its Buffalo, NY facility, the same site where it continues to produce Solar Roof components, which inspired the design of the panel. The factory is currently scaling to an initial capacity of over 300 MW per year.

This domestic assembly allows Tesla to leverage federal manufacturing incentives while securing a local supply chain for its growing network of installers.

Power zones

The most technically significant departure from industry norms in the TSP series is the implementation of 18 independent “Power Zones.” Standard residential modules typically utilize three bypass diodes, creating six distinct zones. In traditional architectures, a single shadow from a chimney or vent pipe can effectively “shut down” large swaths of a string’s production.

Tesla’s design essentially triples the granularity of the module. By dividing the electrical architecture into 18 zones, the panel behaves more like a digital screen with a higher pixel count; if one “pixel” is shaded, the remaining 17 continue to harvest energy at near-peak efficiency.

Image: Tesla

While high-density substring architectures have been explored in the utility space, Tesla’s specific 18-zone layout is unique to the residential market, engineered to deliver optimizer-like performance without the added cost and potential failure points of module-level power electronics (MLPE) on the roof.

Inverters, batteries, and mounts

The TSP modules are designed to pair specifically with the Tesla Solar Inverter and Powerwall 3. While Tesla offers these as a unified “Home Energy Ecosystem,” they are not strictly sold as a single, inseparable bundle. However, the hardware is optimized to work as a package; for instance, the panel’s 18-zone design is specifically tuned to perform with Tesla’s string inverter technology.

Tesla is not keeping this technology exclusive to its own crews. While Tesla’s direct installation business leads the rollout, the package is available to Tesla’s network of over 1,000 certified installers.

This “installer-first” approach is further evidenced by the new Tesla Panel Mount. The new rail-less mounting system, made of black anodized aluminum alloy, uses the module frame itself as the structural rail.

The new rail-less mounting system, made of black anodized aluminum alloy, uses the module frame itself as the structural rail.
Image: Tesla

By eliminating traditional rails and visible clamps, Tesla said the system is 33% faster to install. The mount sits closer to the roof and is enhanced by aesthetic front and side skirts, maintaining the “minimalist” look Tesla consumers expect.

Product specs

The modules are competitive with the current Tier 1 market, pushing into the 20% efficiency bracket while maintaining a robust mechanical profile, said the company.

Parameter  TSP-415  TSP-420 
Nominal Power (Pmax)  415 W  420 W 
Module Efficiency  20.3%  20.5% 
Open Circuit Voltage (Voc)  40.92 V  40.95 V 
Short Circuit Current (Isc)  12.93 A  13.03 A 
Max System Voltage  DC 1000V  DC 1000V 
Weight  22.3 kg (49 lbs.)  22.3 kg (49 lbs.) 
Dimensions  1805 x 1135 x 40 mm  1805 x 1135 x 40 mm 

 The new Tesla Solar Panels are now available nationwide. 

Solar roof 

For those wondering about the Tesla Solar Roof, the company maintains that the glass tile product remains a core part of its “premium” offering for customers needing a full roof replacement.

The cascading cell technology used in the new TSP modules, which overlaps cells to eliminate visible silver busbars, was originally designed in its Solar Roof product. Tesla is essentially taking the aesthetic and electrical innovations of its luxury roof product and integrating it into a traditional module form factor.

Virtual power plant

Tesla also highlighted the ability for virtual power plant (VPP) participation to increase value for its customers. VPPs coordinate the dispatch of energy stored in Powerwalls, acting as a distributed energy network. 

“We’re working more closely with utilities than ever to ensure that these assets participate in virtual power plants and support the grid and opening up new value streams, both for utilities and consumers that have these assets at home,” said Hastings. “We announced recently that we have a million Powerwalls deployed worldwide and 25% of those are enrolled in a virtual power plant program of some kind.”

Market strategy

The timing of this launch comes at a volatile moment for U.S. solar. With the passage of the “One Big Beautiful Bill” Act (OBBBA), the industry is navigating the early expiration of the 25D residential credit at the end of 2025 and the sunsetting of the 48E commercial credit.

Tesla’s move now is an opportunistic play for standardization and soft-cost reduction. By controlling the entire stack, Tesla can drive down customer acquisition and labor costs, which currently represent the largest portion of a system’s price tag.

“Utility rates across the country are going up, electricity is becoming increasingly unaffordable for homeowners,” said Hastings. “We’re still very bullish on the future of distributed energy here in the United States.”

Samsung releases new all-in-one heat pump for residential use

29 January 2026 at 15:22

The South Korean giant said its new EHS All-in-One provides air heating and cooling, floor heating, and hot water from a single outdoor unit. It can supply hot water up to 65 C in below-zero weather.

South Korean tech giant Samsung has launched a new all-in-one heat pump for residential and commercial use.

Dubbed EHS All-in-One, the system provides air heating and cooling, floor heating, and hot water from a single outdoor unit. It is initially released for the European market, with a Korean rollout expected within a year.

“It delivers stable performance across diverse weather conditions. It can supply hot water up to 65 C even in below-zero weather and is designed to operate heating even in severe cold down to -25 C,” the company said in a statement. “The system also uses the R32 refrigerant, which has a substantially lower impact on global warming compared with the older R410A refrigerant.”

The product is an upgrade to the EHS Mono R290 monobloc heat pump that the company released in 2023. The company has enlarged the propeller fan and used a high-capacity motor in the novel model, reducing the number of fans from two to one. That results in a design with a height of about 850 mm, approximately 40% lower than before.

“The system also introduces a new Heat Recovery feature, which does not release waste heat from the cooling process to the outside but recycles it. Using this feature can boost the energy efficiency of water heating by more than twice under certain conditions,” Samsung added. “It also includes an ‘AI Saving Mode’ that can reduce energy consumption by up to 17%.”

Received before yesterday

Aerosol divide in 2025 brings clearer skies to China and smoke to Europe

23 January 2026 at 14:03

In a new weekly update for pv magazine, Solcast, a DNV company, reveales that last year extreme Canadian wildfires drove aerosol levels around 30% above normal, sharply reducing solar irradiance across Canada and even impacting Europe, while the Congo Basin also saw worsening aerosol conditions. In contrast, China and South America experienced unusually low aerosol levels, supporting stronger solar irradiance due to cleaner air, reduced fires, and favorable climate and policy conditions.

Aerosol anomalies in 2025 reveal the outsized impact of Canadian wildfires on solar conditions, with smoke and particulates from one of the worst fire seasons in the country’s history driving major reductions in solar irradiance across Canada and beyond. While Canada saw a marked increase in aerosol loading, China and South America experienced anomalously low levels, supporting stronger irradiance conditions. Meanwhile, the Congo Basin registered worsening aerosol conditions, highlighting growing concerns for central Africa's solar outlook, according to analysis using the Solcast API. Aerosols impact solar irradiance by scattering and absorbing solar radiation as it passes through the atmosphere, when calculated this effect is called ‘aerosol extinction’.

Across Canada, 2025 aerosol extinction values were around 30% above climatological norms, indicating significantly higher levels of sunlight absorption and scattering by particulate matter. This spike is directly linked to the extreme wildfire season, with the total burned area in 2025 reaching twice the 10-year average. The timing of the peak fire activity, which aligned with the high-irradiance months of May and June, compounded the impact on solar conditions.

Smoke plumes from Canada were transported across the Atlantic by prevailing westerly winds, impacting solar production as far as Western Europe, where they overlapped with Spain's worst wildfire season in over a decade, further amplifying the regional aerosol burden.

Despite having a higher aerosol load than other solar generation regions, China experienced one of its cleanest atmospheric years in recent history. Aerosol extinction anomalies were approximately 20% below the recent climatology, driven by a combination of favourable meteorological patterns and continued reductions in industrial emissions. These conditions supported a strong irradiance performance throughout the past year when irradiance was already tracking 30% above average.

South America also recorded a notable improvement in aerosol conditions following a turbulent 2024. Anomalies in 2025 were generally 20% to 30% below average, allowing for clearer skies across the region. Solar production in Brazil, benefited from reduced smoke associated with a 45% reduction in burned areas within the Amazon Basin, as detected by the DETER satellite system. This significant decrease is part of a broader post-Bolsonaro shift in environmental management, further supported by La Niña-associated wetter conditions that helped suppress fire activity.

Meanwhile, the Congo Basin experienced worsening aerosol conditions, with extinction anomalies 20% to 30% above climatology. Unlike the declining trends in Saharan dust seen across northern Africa, this spike in aerosols is attributed to increasing fire activity within wet forest regions. The number of active fires in these forests has doubled over the past two decades, largely due to a combination of hotter, drier weather and anthropogenic factors such as conflict or agricultural-driven deforestation

Solcast produces these figures by tracking clouds and aerosols at 1-2km resolution globally, using satellite data and proprietary AI/ML algorithms. This data is used to drive irradiance models, enabling Solcast to calculate irradiance at high resolution, with typical bias of less than 2%, and also cloud-tracking forecasts. This data is used by more than 350 companies managing over 300 GW of solar assets globally.

Solar PV will have a major role in marshalling our productivity to create a sustainable civilization

23 January 2026 at 13:04

In all ages, humankind decided to spend considerable amounts of the available productivity on special monumental projects. Managing climate change and rebalancing within the planetary boundaries is such an activity. The enormous energetic productivity of solar PV may evolve as the central pillar to create a sustainable civilization.

Since civilizations have existed, monumental projects have been undertaken, such as the Pyramids of Giza, the Great Wall of China, the Gothic cathedrals, or the Apollo programme. Substantial labour and resources were invested in such projects, ranging from 0.5% up to 10% of the available productivity in the respective society, and lasting between a few years and more than a century. Such monumental projects can be grouped into five categories: culture, infrastructure, technology, war and conflict, and disaster response. A recent study from Forschungszentrum Jülich, Helmholtz Institute Erlangen Nürnberg for Renewable Energies and LUT University entitled Marshalling our productivity to create a sustainable global civilization investigated monumental projects and their link to excess productivity.

Since the industrial revolution, unprecedented wealth around the world, along with an enormous increase in life expectancy, reduction of infant mortality, reduction of starvation, freeing people from poverty, and creating unparalleled standards of living for many. These benefits were made possible by an ever-increasing use of fuel. At the same time, excessive fossil fuel consumption has led to various repercussions, in particular environmental destruction and climate change.

Reaching a global net-zero emission energy system can be considered a monumental project. Depending on different sources, such as McKinsey, BNEF, the International Energy Agency, or the United Nations, the required annual expenditures to achieve this goal may lie between 0.7 and 1.3% of the global gross domestic product (GDP) to be allocated for a few decades. Such expenditures are in the range of accepted societal choices in the past, for instance the military spending during the Cold War (3% of GDP of the United States for decades, for example) or the Belt and Road Initiative (an estimated 0.75% of GDP of China).

Solar PV gaining ground in the energy system driven by sustainability

The ongoing global energy transition has various facets, with solar PV at its core reaching over 70% of all newly installed power capacity in the world in the recent past as the fastest ramping energy source since the industrial revolution, and positioning solar PV as a prime energy supply solution around the world. Plummeting costs of solar PV and additional renewable energy technologies, complemented by growing battery storage, form the basis of a comprehensive electrification. Since the mid-1990s, global energy transition studies regularly find the contribution of solar PV to the global energy supply by mid-century to be in the order of about 70%.

The energetic sustainability of solar PV has been improved since the invention of the silicon solar cell. The rate at which solar panels have improved over time has been consistent and high for decades. For example, the energy required to make a solar panel has been reduced by 14% every time installations doubled between the 1970s and the 2010s. This learning has been enabled by continuously rising efficiencies, an increase in technology lifetimes, and a reduction in the use of materials per rated power output, as summarized in a recent publication by international PV experts. The energy payback time for PV systems ranges globally between 0.44 – 1.42 years and in Europe between 0.89 – 1.24 years depending on location. The low payback time also results in a large value for the energy returned on investment – a PV system that is operated for 30 years generates between twenty and seventy times the energy that was needed for its production. The lifetime of PV systems may be further increased up to 50 years in the longer term. System-level studies have shown that the energetic sustainability of solar PV remains robust even when accounting for additional energy investments required for batteries, complementary renewable energy technologies, and curtailment, both at global and regional scales.

Rebalancing withing safe and just planetary boundaries enabled by solar PV

Solar PV may emerge as the key driver for a sustainable civilization. This would mean supplying all humans with all needed energy for the highest standards of living, which is estimated to require 150-200 TWp of solar PV installations by the end of this century. A comprehensive Solar-to-X Economy across energy sectors will become a major characteristic in many regions around the world. The upper limit of the range of solar PV installations would even include the energy demand for massive carbon dioxide removal activities to rebalance civilization within safe und just planetary boundaries, which equals to about 10 – 12% of global primary energy supply and may cost about 0.4 – 0.7% of the global GDP to return to 1.0℃ with about 350 ppm of atmospheric CO2 concentration. In this way, PV installations could help in powering carbon dioxide removal to avoid global GDP loss of about 8% if the unintended consequences of our productivity are not addressed. Reaching permanent climate safety and its respective investments can be regarded as a highly profitable venture of civilization in the row of monumental projects in history. The high energetic productivity of solar PV is a major driver to reach a sustainable civilization.

Authors: Christian Breyer, Ian Marius Peters, and Dominik Keiner

This article is part of a monthly column by LUT University.

Research at LUT University encompasses various analyses related to power, heat, transport, desalination, industry, and negative CO2 emission options. Power-to-X research is a core topic at the university, integrated into the focus areas of Planetary Resources, Business and Society, Digital Revolution, and Energy Transition. Solar energy plays a key role in all research aspects.

Ikea, Svea Solar launch dynamic electricity tariff in Germany

23 January 2026 at 09:46

Ikea is expanding its energy offerings in Germany with a dynamic electricity tariff in partnership with Svea Solar, changing every 15 minutes based on day-ahead market prices and available even to customers without its PV systems, storage solutions, or heat pumps.

From pv magazine Germany

Ikea is expanding its energy footprint in Germany. After offering PV systems, balcony solar panels, storage solutions, wallboxes, and heat pumps, the retailer now provides a dynamic electricity tariff. Prices fluctuate every 15 minutes according to activity on the day-ahead electricity market.

The offer is in partnership with the German subsidiary of Swedish PV installer Svea Solar. Ikea acts solely as an intermediary, while Svea Solar is the contractual partner. Customers can subscribe to the tariff without owning any solar or storage systems. Germany is the first market worldwide where Ikea is introducing this tariff.

Called Svea Strom, the tariff supplies electricity exclusively from TÜV-certified renewable sources. An app displays expected electricity prices for the following day. Ikea has not detailed the calculation method for the energy charge but confirmed there is no price cap. A test inquiry with Svea Solar indicated a two-cent-per-kilowatt-hour procurement fee on top of the market price. Network charges, taxes, levies, and surcharges also apply.

The monthly basic fee is €6.99 ($8.21) or €5.95 for Ikea Family and Ikea Business Network members. Members signing up by Feb. 1, 2026, receive a six-month fee waiver. After six months of loyalty, Ikea provides a €25 shopping voucher. The tariff is immediately available and can be canceled monthly.

Eligible households receive a free smart meter if electricity consumption exceeds 6,000 kWh per year or if a heat pump or wallbox is installed according to Section 14a of the German Energy Industry Act (EnWG).

Ikea projects households with battery storage could save around €300 per year, with potential savings up to €500 if a PV system, wallbox, or heat pump is installed.

“We want to make sustainable energy affordable and accessible for the many people, regardless of housing situation, income, or technical expertise,” said Jacqueline Polak, expert for sustainable energy solutions at Ikea Germany. “Our goal is to create more transparency, flexibility, independence, and social participation in the energy market. Sustainable energy should not be a privilege, but the new normal.”

Solar generates record 13% of EU electricity in 2025

23 January 2026 at 08:22

EU solar generation increased by over 20% for the fourth year running in 2025, with its share in the energy mix surpassing coal and hydro. For the first time in history, solar and wind generated more energy in the EU than fossil fuels.

Solar generated a record 369 TWh of energy across the EU in 2025, according to the European Electricity Review published by energy think tank Ember.

The result is an increase of 62 TWh on 2024 and more than doubles the 145 TWh generated in 2020. Ember says solar energy has grown at an average annual growth in generation of 21% over the past five years, a rate far beyond any other energy source.

This growth trajectory, buoyed by an added 65.1 GW of solar in the EU last year, led solar to generate a record 13% of the bloc's power in 2025, moving ahead of coal and hydro. Every EU country saw growth in solar generation increase year-on-year last year, led by Hungary with a 28% contribution to its power mix. In Cyprus, Greece, Spain and the Netherlands, solar’s share in the electricity mix was also over 20%. 

For the first time in history, solar and wind energy generated more EU electricity than fossil fuels in 2025, together responsible for a record 30% of EU power ahead of fossil fuels’ 29%. Solar and wind generated more electricity than all fossil sources in 14 of the EU’s 27 member states.

Report author Beatrice Petrovich said the milestone shows just how rapidly the EU is moving towards a power system backed by wind and solar. “As fossil fuel dependencies feed instability on the global stage, the stakes of transitioning to clean energy are clearer than ever,” Petrovich said.

In 2025, 19 EU countries recorded at least one hour when wind and solar combined accounted for over 70% of the country's hourly power generation, compared to only two countries in 2020. Ember found wind and solar supplied more than half of electricity generation during at least one third of all hours in Denmark, Estonia, Germany, Greece, Lithuania, Luxembourg, the Netherlands, Portugal and Spain. 

Ember’s report adds that all renewable sources, comprising solar, wind, hydro, bioenergy and other renewables, generated a total 1,331 TWh of energy in the EU last year for a 47.7% share of the total mix, 0.2% down on the year prior. The report says the share remained stable as the weather conditions that caused a drop in wind and hydro output boosted solar generation.

While gas generation rose by 8% compared to 2024, pushing the EU power sector’s gas import bill up to €32 billion, coal power fell to a historic low of 9.2%, with 19 EU countries now generating less than 5% of their energy from coal.

As solar and wind energy becomes the backbone of Europe’s power system, Ember’s report says electricity storage, together with grid enhancements and demand flexibility, will be crucial to put increasingly abundant renewable power to use and displace imported fossil power.

Among a series of recommendations listed in the report is removing barriers to battery deployment in national legislation, EU member states collaboration on permitting for key cross-border power lines, supporting investment in heat pumps and other electric technologies, introducing policy for electrifying transport, heating, and industry via the forthcoming Electrification Action Plan and delivering legislation to ban Russian gap and LNG imports by 2027.

US, Europe on track for 2030 solar goals despite pipeline gaps

22 January 2026 at 14:53

A report from McKinsey and Company says the relative ease of building out solar projects means the U.S and Europe are likely to meet their end-of-decade deployment targets, despite current pipeline gaps of around 205 GW and 181 GW.

The US and Europe are likely to meet their 2030 solar targets despite current project pipelines being smaller than their end-of-decade targets, according to a report from global management consulting firm McKinsey and Company.

McKinsey’s “Tracking the energy transition: where are we now?” report analyzes the pathway of solar, wind and battery energy storage system (BESS) technologies towards the 2030 deployment targets set by China, the United States and the EU-27, Norway, Switzerland and the UK in Europe.

It says the US is currently around 254 GW away from its 2030 target while Europe is around 275 GW away. In contrast, China has already more than doubled its 2030 target.

Despite the US and Europe currently lacking enough announced capacity to meet their 2030s targets, by around 205 GW and 181 GW respectively, McKinsey's analysis says they are still likely to find this additional capacity and reach their end-of-decade thresholds thanks to the ease of building out solar.

“While it is easier to track project build-out for other clean energy technologies, data visibility for solar is more limited due to individual household use and ease of build-out,” McKinsey’s report explains. “For example, a consumer can install household solar in two months. This means that the announced capacity may be underestimated in this analysis.”

Diego Hernandez Diaz, a partner at McKinsey, told pv magazine that while core markets will continue their build out, further demand growth will also occur in less saturated core markets such as Poland. “The advantage of some of these elements is that the more nascent markets can have a better economic trade off and can be built in an economically pragmatic way,” he explained.

The report does acknowledge that this growth trajectory is not guaranteed, citing supply chain risks, tariffs, shifting policy focus and growing political uncertainty as factors that can slow down progress. Hernandez Diaz added there will likely be an effect from shifting regulation across the board.

“Perhaps more importantly, however, is that beyond any regulation, what we continue to see is that if the underlying economics work, then deployment accelerates,” he stated. “All major geographies covered in the report have the underlying fundamentals to support accretive deployment of further renewable energy sources.”

The report also notes that the battery energy storage system (BESS) pipeline is growing rapidly across China, the US and Europe, but remains behind what is needed to meet 2030 targets. McKinsey estimates around an additional 123 GW is required in China, 154 GW in the US and 221 GW in Europe.

The analysts says BESS remains the dominant question mark but can be sited, permitted, constructed, and interconnected far faster than technologies such as nuclear or gas with carbon, capture, utilization and storage (CCUS) contributing to its rapid growth in recent years.

The report attributes the rapid acceleration of BESS installation to a positive business case for both large-scale operators and households when paired with solar. “Load balancing is also becoming a popular source of revenue for battery operators,” the report adds. “Planning and integrating BESS with renewable rollout is critical if 2030 net-zero targets are to be met.”

❌