Reading view

Union Budget 2026-27 highlights for the renewable energy sector

The Union Budget 2026-27 aims at strengthening clean energy development, clean technology manufacturing, lithium-ion battery production, and tariff rationalisation. There has been a significant increase in budgetary allocations for the Ministry of New and Renewable [...]

The post Union Budget 2026-27 highlights for the renewable energy sector appeared first on Renewable Watch.

  •  

Greenko Group secures Rs 48 billion loan from NaBFID

Greenko Group has secured a Rs 48 billion long-term loan from the National Bank for Financing Infrastructure and Development (NaBFID). The loan has a tenure of 25 years and has been arranged to refinance green [...]

The post Greenko Group secures Rs 48 billion loan from NaBFID appeared first on Renewable Watch.

  •  

Reducing PV module temperature with leaf vein–inspired fins

Researchers in Iraq have developed biomimetic leaf vein–inspired fins for photovoltaic panels, with reticulate (RET) venation reducing panel temperature by 33.6 C and boosting efficiency by 18% using passive cooling. Their study combines 3D CFD simulations and electrical evaluations to optimize fin geometry, offering a sustainable alternative to conventional cooling methods.

A research group from Iraq’s Al-Furat Al-Awsat Technical University has numerically investigated the thermal and electrical performance of PV panels integrated with leaf vein–inspired fins. They have simulated four types of venation used by plants, namely pinnate venation (PIN), reticulate venation (RET), parallel venation along the vertical axis (PAR-I), and parallel venation along the horizontal axis (PAR-II).

“The key novelty of our research lies in introducing and systematically optimizing biomimetic leaf vein–inspired fin geometries as passive heat sinks for photovoltaic panels,” corresponding author Yasser A. Jebbar told pv magazine. “While conventional cooling approaches rely on simple straight fins, fluids, or active systems, our study is among the first to directly translate natural leaf venation patterns—particularly RET structures—into manufacturable backside fins specifically tailored for PV thermal and electrical performance.”

The team combined detailed 3D computational fluid dynamics (CFD) modeling with electrical efficiency analysis to identify geometries that maximize heat dissipation without additional energy input or water consumption. Next steps include experimental validation of the leaf vein fin designs under real outdoor conditions, particularly in hot climates.

The simulated PV panel consisted of five layers: glass, two ethylene-vinyl acetate (EVA) layers, a solar cell layer, and a Tedlar layer, with a copper heat sink and fins attached. All fin configurations were initially 0.002 m thick, 0.03 m high, and spaced 0.05 m apart. Panels measured 0.5 m × 0.5 m, with a surrounding air velocity of 1.5 m/s and incident irradiance of 1,000 W/m².

RET fins outperformed all other designs, reducing operating temperature by 33.6 C and increasing electrical efficiency from 12.0% to 14.19% —an 18 % relative improvement—compared to uncooled panels.

“This temperature reduction rivals, and in some cases exceeds, water-based or hybrid cooling methods, despite relying solely on passive air cooling,” Jebbar noted. The study also highlighted the significant impact of fin height, more than spacing or thickness, on cooling performance.

The team further optimized the RET fins, varying spacing from 0.02–0.07 m, height from 0.02–0.07 m, and thickness from 0.002–0.007 m. The optimal geometry—0.03 m spacing, 0.05 m height, and 0.006 m thickness—achieved the maximum 33.6 C temperature reduction and 18% efficiency gain.

The novel cooling technique was described in “Improving Thermal and Electrical Performance of PV Panels Using Leaf Vein Fins,” published in Solar Energy. Researchers from Iraq’s Al-Furat Al-Awsat Technical University, University of Kerbala, and Sweden’s University of Gävle have participated in the study.

  •  

How to design a UL-certified balcony solar kit in the United States

UL Solutions has published new technical guidance and a proposed certification pathway for plug-in balcony solar systems, outlining safety risks and design requirements as several US states move to legalise the technology.

From pv magazine USA

UL Solutions has released new design guidance and a proposed certification framework for balcony solar, also known as plug-in PV (PIPV), as US policymakers and manufacturers begin to explore consumer-installed solar systems that connect directly to wall outlets.

In a white paper titled “Interactions of Plug-In PV (PIPV) with Protection of Existing Power Systems,” UL outlines safety considerations for products that allow consumers to plug solar modules into existing residential circuits. The document identifies three primary risk categories: overcurrent protection, touch safety and ground-fault protection.

UL moved quickly to develop a new certification pathway, UL 3700, an Outline of Investigation for Interactive Plug-In PV Equipment and Systems, following the passage of Utah’s balcony solar legislation. Similar bills are now under consideration in other states, including California’s Senate Bill 868.

According to UL, overcurrent protection presents a key challenge because PIPV systems can inject power into branch circuits without being detected by standard circuit breakers. In some scenarios, combined household loads and injected solar power could exceed a circuit’s design limits without triggering protective devices, increasing the risk of overheating conductors and associated components.

UL said potential mitigation measures include dedicated circuits for PIPV systems, solar-specific receptacles, or connection to circuits with oversized conductors.

Touch safety is another concern, as PIPV systems are handled directly by consumers rather than trained electricians. While standard household plugs are well understood as loads, UL notes they have not been evaluated as power sources. The organization also flagged challenges related to inverter behaviour, particularly anti-islanding and grid-response functions that may not be designed for frequent plug-in and unplugging events.

Ground-fault protection was identified as the third major risk area. Because PIPV systems are typically installed outdoors and exposed to weather, UL said interactions with ground-fault circuit interrupters require careful design. Current electrical code requires outdoor receptacles to be on dedicated branch circuits, which may necessitate new outlet designs or dedicated connections for PIPV systems.

Ken Boyce, vice president of principal engineering at UL Solutions, said the organisation’s role is to evaluate safety outcomes rather than commercial viability. As of mid-January, he said UL was not aware of any PIPV products that had completed certification under UL 3700, noting that the outline was only released in mid-December.

To continue reading, please visit our pv magazine USA website. 

  •  

UNSW researchers identify new damp heat-induced failure mechanism in TOPCon solar modules

UNSW researchers identified a new damp-heat degradation mechanism in TOPCon modules with laser-fired contacts, driven primarily by rear-side recombination and open-circuit voltage loss rather than series-resistance increase. The study highlights that magnesium in white EVA encapsulants accelerates degradation, guiding improved encapsulant and backsheet selection for more reliable modules in humid environments.

A research team from the University of New South Wales (UNSW) has identifed a new damp heat-induced degradation pathway in TOPCon modules fabricated with laser-assisted fired contacts.

“Unlike earlier studies dominated by series-resistance increase, the primary degradation driver here is a reduction in open-circuit voltage, linked to enhanced rear-side recombination,” the research's lead author, Bram Hoex, told pv magazine. “The new degradation mechanism emerged under extended damp-heat (DH) exposure.”

The scientists conducted their analysis on 182 mm × 182 mm TOPCon cells fabricated in 2024 with laser-assisted firing.

The TOPCon solar cells employed a boron-doped p⁺ emitter, along with a front-side passivation stack consisting of unintentionally grown silicon dioxide (SiOₓ), aluminium oxide (Al₂O₃), and hydrogenated silicon nitride (SiNₓ:H), capped with a screen-printed H-pattern silver (Ag) contact grid. On the rear side, the structure comprised a SiO₂/phosphorus-doped n⁺ polycrystalline silicon/SiNₓ:H stack, also contacted by a screen-printed H-pattern Ag grid.

The researchers encapsulated the cells with different bill of materials (BOMs): two types of ethylene vinyl acetate (EVA); two types of polyolefin elastomer (POE); and one type of EVA-POE-EVA (EPE). They also used commercial coated polyethylene terephthalate (PET) composite (CPC) backsheets.

“The mini modules were laminated at 153 C for 8 min under standard industrial lamination conditions,” the academics explained. “All modules underwent DH test at 85 C and 85% relative humidity (RH) in an ASLi climate chamber for up to 2,000 h to study humidity-induced failures.

Schematic of the TOPCon solar cells and modules

Image: UNSW, Solar Energy Materials and Solar Cells, CC BY 4.0

The tests showed that maximum power losses ranged from 6% to 16%, with the difference among these values depending strongly on the encapsulation BOM.

“The modules with POE on both sides were the most stable at around 8%, while those using white EVA on the rear side, especially in combination with EPE, showed the largest losses at around 16%,” said Hoex. “The primary driver of the degradation was a reduction in open-circuit voltage rather than the increased series resistance after DH testing, which diverges from previous findings that predominantly attributed DH-induced degradation to metallisation corrosion.”

The research team explained that higher levels of degradation were attributable to additives containing magnesium (Mg) in white EVA, which migrate under DH, hydrate, and create an alkaline micro-environment. “This alkaline chemistry corrodes the rear SiNx passivation layer, increases interfacial hydrogen concentration, induces local pinhole-like defects, and raises dark saturation current, ultimately reducing open-circuit voltage,” Hoex emphasized.

The scientists also explained that, although Mg in white EVA encapsulants and its role in acetic acid–induced degradation was previously reported, the effect of MgO on performance degradation in TOPCon modules was not explicitly studied.

Their findings are available in the paper “A novel damp heat-induced failure mechanism in PV modules (with case study in TOPCon),”  published in Solar Energy Materials and Solar Cells.

“We hope this work helps refine encapsulant and BOM selection strategies for next-generation TOPCon modules, particularly for humid-climate deployment,” Hoex concluded. “It provides clear guidance for controlling Mg content in rear encapsulants and optimising rear-side passivation robustness. The mechanistic insights from this study have already informed upstream design changes, substantially reducing risk in commercial modules.”

Other research by UNSW showed the impact of POE encapsulants in TOPCon module corrosion, soldering flux on TOPCon solar cell performancedegradation mechanisms of industrial TOPCon solar modules encapsulated with ethylene vinyl acetate (EVA) under accelerated damp-heat conditions, as well as the vulnerability of TOPCon solar cells to contact corrosion and three types of TOPCon solar module failures that were never detected in PERC panels.

Furthermore, UNSW scientists investigated sodium-induced degradation of TOPCon solar cells under damp-heat exposure, the role of ‘hidden contaminants’ in the degradation of both TOPCon and heterojunction devices, and the impact of electron irradiation on PERC, TOPCon solar cell performance.

More recently, another UNSW rsearch team developed an experimentally validated model linking UV-induced degradation in TOPCon solar cells to hydrogen transport, charge trapping, and permanent structural changes in the passivation stack.

  •  

Vungu Solar Signs 25-Year PPA with ZETDC for 30 MW Solar Project in Zimbabwe

Vungu Solar Pvt Ltd has signed a 25-year Power Purchase Agreement with ZETDC for a 30 MWac solar project, boosting Zimbabwe’s renewable energy capabilities. This landmark initiative will power around 76,000 households, attract investment, and promote job creation while supporting the country’s energy transition toward sustainability and energy security.

The post Vungu Solar Signs 25-Year PPA with ZETDC for 30 MW Solar Project in Zimbabwe appeared first on SolarQuarter.

  •  

China added 66.43 GW of new-type energy storage in 2025

CNESA says China’s non-pumped storage technologies hit 144.7 GW in 2025, with 66.43 GW added.

From ESS News

China’s cumulative power-sector energy storage capacity reached 213.3 GW by the end of 2025, up 54% year on year, according to data from the China Energy Storage Alliance (CNESA). Pumped hydro accounted for 31.3% of the total, while “new-type” energy storage made up 67.9% – around 144.7 GW.

Based on CNESA DataLink 2025 annual energy storage dataset, presented at a press conference in Beijing on Jan. 22, a total of 66.43 GW/189.48 GWh of new-type energy storage systems were commissioned in 2025.

The added power and energy scales increased 52% and 73% year on year, respectively, which CNESA linked to a continued shift toward longer-duration configurations, it reported the average duration rising to 2.58 hours in 2025 (from 2.11 hours in 2021).

CNESA said the leading application scenario has shifted toward standalone energy storage, which accounted for 58%, while user-side storage fell to 8% and thermal-plus-storage frequency regulation to 1.4%; “renewables-paired storage” was described as stable.

Geographically, CNESA reported that the top 10 provinces each exceeded 5 GWh of newly commissioned capacity and together represented about 90% of additions. Inner Mongolia ranked first by both power and energy capacity, and Yunnan entered the top 10 for the first time.

Lithium iron phosphate (LFP) batteries continued to dominate, with CNESA reporting over 98% of new-type installed capacity. CNESA also noted emerging deployments of sodium-ion, vanadium flow, compressed air, gravity storage, and hybrid systems, separately citing a 40 MW/40 MWh grid-forming sodium-ion project in Wenshan, Yunnan as an example.

On procurement, CNESA reported 690 energy storage system tenders (excluding centralized/framework procurement), down 10.4%, while EPC tenders rose to 1,536, up 4.5%. Winning bid volumes (excluding centralized/framework procurement) reached 121.5 GWh for systems and 206.3 GWh for EPC.

CNESA’s tender-price analysis for LFP systems (excluding user-side applications) reported a 2025 winning bid price range of CNY 391.14/kWh ($55/kWh) to CNY 913.00/kWh ($128/kWh). For EPC (excluding user-side), CNESA reported average winning bid prices of CNY 1,043.82/kWh ($146/kWh) for 2-hour projects and CNY 935.40/kWh ($131/kWh) for 4-hour projects.

CNESA also launched a policy “map” for standalone storage market mechanisms covering 21 provinces.

  •  

Uncertainty looms as U.S. solar PPA prices climb for second straight quarter

A report from LevelTen Energy finds solar PPA prices in North America rose 3.2% in Q4 2025, marking a nearly 9% year-over-year increase as developers and buyers navigate a complex “post-OBBBA” regulatory environment.

From pv magazine USA

Renewable energy power purchase agreement (PPA) prices continued their upward trajectory in the final quarter of 2025, driven by persistent policy headwinds and a shifting tax credit landscape.

According to the Q4 2025 PPA Price Index from marketplace operator LevelTen Energy, solar P25 prices rose by 3.2% following a 4% increase in the third quarter.

While solar costs climbed, wind PPA prices saw a slight dip, declining 1%. However, on an annual basis, both technologies have seen prices surge by nearly 9% compared to the same period last year.

Post-OBBBA

The market is currently adjusting to the “One Big Beautiful Bill Act” (OBBBA), which introduced tax credit cuts. LevelTen noted the second half of 2025 was defined by “ruthless” prioritization as firms scrambled to safe-harbor projects.

Despite these challenges, a November survey of developers representing over 230 GW of capacity found that more than 75% of projects slated to go online before 2029 expect to successfully retain access to tax credits.

This clarity has allowed some developers to dial in pricing by removing risk premiums that had previously accounted for OBBBA-related uncertainties, said the report.

Regional pricing

The report highlights significant price disparity across North American ISOs. For solar, P25 prices reached as high as $115 per MWh in ISO-NE and $81.03/MWh in PJM, while ERCOT remained the most competitive at $49 per MWh.

ISO Market  Solar P25 Price ($/MWh) 
ISO-NE  $115.00  
PJM  $81.03  
MISO  $64.95  
CAISO  $62.00  
ERCOT  $49.00 

In the wind sector, ERCOT has seen a massive 19% year-over-year price hike, fueled by an ongoing boom in data center development and a premium on available capacity. 

Buyer headwinds

LevelTen pointed to several factors that could continue to apply upward pressure on prices:

  • Tariff uncertainties: Ongoing Section 232 investigation tariffs are adding direct development costs.
  • Permitting hurdles: “Harsh” new federal permitting procedures have stalled substantial amounts of development nationwide.
  • FEOC: The industry is still awaiting guidance on Foreign Entity of Concern (FEOC) rules, which are expected to add compliance costs and further complicate tax credit qualification.

Corporate strategy

Many corporate buyers are now pausing or adjusting their procurement strategies due to proposed updates to the Greenhouse Gas Protocol (GHGP) Scope 2 standards, said the report. The updates, expected to be finalized in 2027, may introduce more stringent accounting for hourly matching and physical deliverability.

“The current uncertainty has caused some buyers… to adjust or even delay their procurement strategies,” the report said.

LevelTen encourages industry players to weigh in on the proposal, as 97% of companies tracking emissions currently utilize the GHGP.

As buyers and sellers work to establish a “pricing equilibrium,” the report said in markets where contract values are challenging, sellers may need to find more transactable pricing levels to get deals done.

 

  •  

Red Willow solar-plus-storage project in Canada receives approval

Westbridge Renewable Energy Corporation has received regulatory approval from the Alberta Utilities Commission (AUC) for its Red Willow solar and battery energy storage project in Stettler county, Alberta, Canada. The approval has been granted to [...]

The post Red Willow solar-plus-storage project in Canada receives approval appeared first on Renewable Watch.

  •  

Enlight acquires stake in solar-plus-storage project in Germany

Enlight Renewable Energy Limited has entered into an agreement to acquire a majority stake in Project Jupiter, a large-scale co-located solar and energy storage project in Germany, in partnership with Prime Capital AG, acting through [...]

The post Enlight acquires stake in solar-plus-storage project in Germany appeared first on Renewable Watch.

  •  

ACME Solar Secures Long-Term Power Agreement for 250 MW FDRE Project with NHPC – EQ

In Short : ACME Solar has signed a 25-year power purchase agreement with NHPC for a 250 MW firm and dispatchable renewable energy project. The agreement ensures reliable round-the-clock clean power by combining renewable sources with storage solutions, supporting grid stability, enhancing renewable integration, and advancing India’s transition toward a low-carbon and resilient power system.

In Detail : ACME Solar’s signing of a 25-year power purchase agreement with NHPC for a 250 MW firm and dispatchable renewable energy project represents a significant development in India’s clean energy sector. The long-term nature of the agreement highlights growing confidence in hybrid renewable models that can deliver consistent and reliable power.

Firm and dispatchable renewable energy projects are designed to overcome the intermittency challenges associated with solar and wind generation. By integrating multiple renewable sources along with energy storage systems, FDRE projects ensure continuous power supply that closely matches conventional baseload generation profiles.

The partnership between ACME Solar and NHPC reflects an important shift in India’s renewable energy strategy. Rather than focusing solely on installed capacity, the emphasis is increasingly on reliability, availability, and grid integration. This approach supports the evolving needs of utilities and industrial consumers that require dependable power.

Energy storage plays a critical role in the success of FDRE projects. Battery storage systems or other forms of storage allow excess renewable energy to be stored during periods of high generation and released during peak demand. This improves grid stability and reduces dependence on fossil fuel-based peaking plants.

The 25-year duration of the power purchase agreement provides long-term revenue visibility for ACME Solar, enhancing the financial viability of the project. Such long-term contracts help attract investment, reduce financing costs, and support large-scale deployment of advanced renewable technologies.

For NHPC, the agreement strengthens its clean energy portfolio and aligns with its broader diversification strategy beyond hydropower. By procuring firm renewable power, NHPC can offer more reliable green electricity to its customers while supporting national renewable energy targets.

From a system perspective, FDRE projects contribute to better grid planning and operations. Dispatchable renewable power can support load balancing, reduce transmission congestion, and enhance the integration of variable renewable energy across regional and national grids.

The project also reflects India’s evolving regulatory and market framework for renewable energy. Policy support for hybrid and storage-based projects encourages innovation and accelerates the transition from capacity-driven targets to performance-driven energy solutions.

Overall, ACME Solar’s 250 MW FDRE project under a long-term agreement with NHPC represents a key milestone in India’s clean energy journey. It demonstrates how renewable energy, when combined with storage and smart planning, can deliver reliable, scalable, and sustainable power for the future.

  •  

Manufacturing for Scale, Reliability, and the Next Phase of India’s Solar Growth

Solar power in India has moved decisively from the margins to the mainstream of the country’s energy planning. With capacity targets rising and decarbonisation timelines tightening, the discussion is no […]

The post Manufacturing for Scale, Reliability, and the Next Phase of India’s Solar Growth appeared first on SolarQuarter.

  •  

Vingroup Commits USD 3 Billion Investment for Smart City, EV, Solar and Tourism Projects in Telangana – EQ

In Short : Vietnam’s Vingroup has announced a USD 3 billion investment in Telangana to develop large-scale projects across smart cities, electric mobility, renewable energy, tourism, healthcare, and education. Spread over 2,500 hectares, the initiative includes India’s first electric taxi fleet, a 1,080-hectare smart city, and a 500 MW solar power project.

In Detail : Vietnamese conglomerate Vingroup has signed a Memorandum of Understanding with the Government of Telangana to invest USD 3 billion in developing an integrated multi-sector ecosystem across the state. The projects will cover smart urban development, electric mobility, renewable energy, tourism, healthcare, education, and strategic infrastructure, marking one of the largest foreign investment commitments in Telangana.

The investment will be spread over nearly 2,500 hectares and is expected to significantly strengthen Telangana’s urban infrastructure, clean energy capacity, employment opportunities, and global investment positioning. The partnership reflects Vingroup’s broader global expansion strategy and reinforces its growing presence in the Indian market.

A key component of the initiative is the launch of India’s first large-scale electric taxi fleet through GSM, Vingroup’s mobility arm. The fleet will use VinFast electric vehicles, supporting cleaner urban transport, reducing carbon emissions, and contributing to Telangana’s electric mobility ambitions.

Vingroup is also evaluating the establishment of electric vehicle manufacturing and assembly facilities in the state. This move would further integrate Telangana into India’s EV supply chain and strengthen the state’s position as a hub for electric mobility and advanced manufacturing.

Under its real estate arm, Vingroup plans to develop a Vinhomes Smart City over 1,080 hectares, designed to house nearly 2,00,000 residents. The project is expected to generate around 10,000 jobs and will include smart infrastructure, digital services, sustainable urban design, green spaces, and modern mobility solutions.

In addition to residential development, around 70 hectares will be dedicated to social infrastructure, including Vinschool K–12 campuses, Vinmec international hospitals, and a V-Green electric vehicle charging network. These facilities aim to enhance access to high-quality education, healthcare, and EV support services.

The tourism segment of the investment includes a 350-hectare integrated entertainment destination under the VinWonders brand. The project will feature a large theme park, a modern zoo, and a safari experience, positioning Telangana as a major tourism and leisure hub.

On the renewable energy front, Vingroup’s green energy arm VinEnergo will develop a 500 MW solar power plant across 500 hectares. The project will supply clean energy to residential zones, industrial areas, and EV infrastructure, directly supporting Telangana’s renewable energy and climate goals.

The Telangana government has assured full support for the projects through land allocation, fast-track approvals, and policy incentives. Chief Minister A. Revanth Reddy described the investment as a major endorsement of the state’s “Telangana Rising” vision, while Vingroup stated that Telangana offers strong potential aligned with its expertise in smart cities and electric mobility.

  •  

DKEM seeks $57.5 million in twin patent suits against Chinese PV rivals

Wuxi DK Electronic Materials is pursuing two patent infringement cases against domestic competitors, seeking injunctions, equipment destruction, and combined damages of CNY 400 million ($57.5 million).

Wuxi DK Electronic Materials has filed two patent infringement lawsuits with the Jiangsu High People’s Court against Jiangsu Riyu Photovoltaic New Materials and Suzhou Jinyin New Materials Technology , seeking CNY 200 million in damages and related legal costs in each case.

The company said both filings have been formally accepted and registered by the court, although hearing dates have not yet been scheduled.

The lawsuits concern two Chinese invention patents, ZL201180032359.1 and ZL201180032701.8, covering thick-film conductive paste formulations for semiconductor devices, including solar cells. DKEM said the patents are held by its subsidiary Solamet Electronic Materials and relate to lead-tellurium-lithium and oxide-based paste technologies.

DKEM is seeking injunctions to halt the manufacture, sale, and offering for sale of the allegedly infringing pastes. The company is also requesting the destruction of dedicated production equipment and molds, and compensation for economic losses, enforcement costs, and related expenses.

The patents trace back to the intellectual property portfolio of DuPont’s former Solamet photovoltaic paste business, acquired by another entity in 2021 for $190 million. DKEM later consolidated control of the Solamet assets and associated intellectual property.

Suzhou Jinyin is described in Chinese financial reporting as a leading supplier of front-side silver paste for solar cells, ranking third globally by market share. Founded in 2011, it was later acquired by listed electronics firm Suzhou Good-Ark Electronics. Jiangsu Riyu is a fast-growing paste supplier that filed a Hong Kong listing application in 2025, with plans to expand into n-type and back-contact paste products.

This follows earlier high-value patent actions by DKEM. In 2025, its subsidiary filed a suit against Zhejiang Guangda Electronic Technology seeking similar remedies. A Solamet-linked entity also pursued related claims against Changzhou Juhe New Materials in 2021, with domestic and overseas disputes reportedly settled in August 2022.

Separately, DKEM flagged earnings pressure, forecasting a net loss of CNY 200 million to CNY 300 million for 2025, primarily linked to non-operating factors, according to Chinese financial media.

  •  

TheStorage launches its first industrial-scale sand-based heat storage system

The Finnish start-up says its sand battery technology is scalable from 20 to 500 MWh with charging power from 1 to 20 MW, depending on industrial needs.

From ESS News

Finnish cleantech startup TheStorage says that its thermal storage technology could reduce industrial energy costs by up to 70% and cut carbon emissions by as much as 90%. The system converts renewable electricity into heat, stores it in sand, and delivers it on-demand for industrial heating.

The concept emerged in Finland in 2023, with engineering work beginning in 2024. In January 2026, TheStorage installed its first industrial-scale pilot at a brewery, putting the technology to the test in a real-world setting. There, it produces fossil-free steam for the brewery’s production lines.

“Producing steam without fossil fuels is a major step toward carbon-neutral production,” says Vesa Peltola, Production Director of the brewery.

TheStorage’s technology captures electricity when it is abundant and inexpensive, converts it into high-temperature heat, and stores it in sand. This stored heat can later be used in industrial processes independently of real-time electricity availability.

To continue reading, please visit our ESS News website.

  •  

Agrivoltaics can help lettuce survive extreme heat

Scientists have grown organic romaine lettuce under 13 different types of PV modules, in an unusual hot Canadian summer. Their analysis showed lettuce yields increased by over 400% compared to unshaded control plants.

A research group from Canada’s Western University has investigated the performance of organic romaine lettuce, a heat-sensitive crop, under a broad range of agrivoltaic conditions. The test was conducted in London, Ontario, in the summer of 2025, during which 18 days had temperatures over 30 C.

“Our study explores how agrivoltaic systems can be tailored to optimize crop growth, especially under extreme heat conditions, while contributing to sustainable energy generation,” corresponding researcher Uzair Jamil told pv magazine.

“This becomes especially relevant in the context of climate change, where we are experiencing temperature extremes across the world,” Jamil added. “We examined the performance of organic romaine lettuce under thirteen different agrivoltaic configurations – ranging from crystalline silicon PV to thin-film-colored modules (red, blue, green) – in outdoor, high-temperature stress conditions.”

More specifically, the experiment included c-Si modules with 8%, 44% and 69% transparency rate; blue c-Si modules with transparency of 60%, 70%, and 80%; green c-Si modules with transparency of 60%, 70%, and 80%; and red c-Si modules with transparency of of 40%, 50%, 70%, and 80%.

All agrivoltaics installations had a leading-edge height of 2.0 m and a trailing-edge height of 2.8 m, and the modules were oriented southwards at 34◦. Pots with organic romaine lettuce were placed under all configurations, along with three pots fully exposed to ambient sunlight without shading, used as controls.

In addition to measurements against the control, the scientific group has compared the results to the national average per-pot yield for 2022, which included less high-temperature days and was therefore considered typical. Those data points were taken from agricultural census data, which later enabled the researcher also to create nationwide projections of their results.

“Lettuce yields increased by over 400% compared to unshaded control plants, and 200% relative to national average yields,” Jamil said about the results. “60% transparent blue Cd-Te and 44% transparent crystalline silicon PV modules delivered the highest productivity gains, demonstrating the importance of both shading intensity and spectral quality in boosting plant growth.”

Jamil further added that if agrivoltaic were to scale up to protect Canada’s entire lettuce crop, they could add 392,000 tonnes of lettuce.

“That translates into CAD $62.9 billion (USD $46.6 billion) in revenue over 25 years,” he said. “If scaled across Canada, agrivoltaics could also reduce 6.4 million tonnes of CO2 emissions over 25 years, making it a key player in reducing the agricultural sector’s environmental footprint.”

The results of the research work were presented in “Enhancing heat stress tolerance in organic romaine lettuce using crystalline silicon and red, blue & green-colored thin film agrivoltaic systems,” published in Solar Energy.

  •  

Chinese PV Industry Brief: Polysilicon output set to fall by 15% in January

Polysilicon trading in China remained largely inactive, with production cuts accelerating and wafer prices falling week on week, while downstream cell prices continued to rise and module prices held steady, according to a trade group representing China's nonferrous metals sector.

The China Nonferrous Metals Industry Association (CNMA) said polysilicon trading remained largely stalled, with only limited exploratory orders completed. One leading producer has halted operations, while two others have implemented production cuts. January output is expected to fall by about 15% month on month, broadly in line with wafer production schedules, with February output forecast at 82,000 to 85,000 metric tons. The association said most wafer prices declined week on week, with average transaction prices at CNY 1.26 per piece for n-type G10L wafers, down 3.82%; CNY 1.32 for n-type G12R wafers, down 7.04%; and CNY 1.52 for n-type G12 wafers, down 8.43%. Downstream cell prices rose to CNY 0.41/W to CNY 0.45/W, up 4.88%, while module prices were stable at CNY 0.71/W to CNY 0.75/W.

Hoymiles has signed a supply contract with Indian renewable energy solutions provider KOSOL Energie to deliver 360 MW of its HMS series microinverters in 2026. The company said the products are optimized for India’s high-temperature, high-humidity, and high-irradiance conditions, as well as for larger module formats, large-scale commercial and industrial rooftops, and complex grid environments.

Boway Alloy has issued a profit warning, forecasting full-year 2025 net profit attributable to shareholders of CNY 100 million to CNY 150 million, down 88.9% to 92.6% year on year. The China-listed parent of Vietnam-based Boviet Solar said the decline reflects impairment charges linked to high US anti-dumping and countervailing duties on Vietnam-manufactured products, which made relocating production uneconomic, as well as reduced subsidies and order losses at its United States subsidiary following passage of the United States “Big and Beautiful” Act. Boway Alloy said it is exploring equity divestment options.

PowerChina has signed an engineering, procurement and construction (EPC) contract through its Colombia branch for a 251 MW solar project in Santander province, Colombia. The scope includes PV plant development, equipment supply, installation and commissioning, with a string inverter plus tracking system configuration intended to improve generation efficiency and operational stability.

Deye said it submitted an application on Jan. 27 to issue H shares and list on the main board of the Hong Kong Stock Exchange. The company said its listing application materials were published on the exchange’s website the same day.

  •  

‘Women with young children are frequently expected to prove they are prioritizing work’

This week Women in Solar+ Europe gives voice to Alba Sande, lawyer at Spanish law firm ASande Legal. She states that, despite progress, women remain underrepresented in the renewable energy industry. "As a woman and a mother, I have often encountered the unspoken assumption that professional ambition must take a backseat to family life, a bias rarely applied to men," she says.

The solar, energy storage, EV charging, and grid infrastructure sectors sit at the heart of the energy transition. What makes these industries particularly suited to, and in need of, gender diversity and inclusion is the nature of the challenge itself. The energy transition demands innovative thinking, long-term vision, and the ability to manage complexity across technical, legal, regulatory, and social dimensions. Gender diversity brings varied perspectives, leadership styles, and problem-solving approaches. Inclusion ensures those voices are heard and valued.

These industries work best when they reflect the diversity of the communities they serve. Decision-making becomes stronger when collaboration replaces uniformity. Diverse teams are not only fairer; they are more effective, more resilient, and better prepared to build a sustainable future.

From my experience, diversity, equity, and inclusion are directly linked to the resilience and success of the renewable energy sector. DEI broadens the range of inputs organizations rely on to navigate complexity. Inclusive workplaces foster trust and psychological safety, encouraging open dialogue and the kind of bold ideas that innovation requires. This is essential in a fast-evolving sector like renewable energy, where adaptation is constant. When professionals feel empowered to contribute, retention improves, decision-making becomes more robust, and strategies are better aligned with societal needs. DEI is not separate from business success, it is integral to long-term impact.

Looking back at my own career, I encountered systemic barriers that many women in male-dominated industries will recognise. Implicit biases about how leadership should look and sound, often shaped by traditional models, were persistent. The absence of visible female role models and the lack of structural support, particularly for those balancing care responsibilities, created additional friction. Overcoming these challenges required building strong support networks, staying grounded in purpose, and allowing results to speak clearly. It also meant resisting pressure to “fit the mould” and instead demonstrating that strategic thinking, empathy, and consistency are powerful leadership traits.

Over time, I have observed important shifts in how the industry approaches gender inclusion in leadership. There is greater recognition that diverse leadership is not simply desirable; it is necessary. We are seeing more women in strategic roles and greater openness to flexible career paths. That said, inclusion at senior levels still requires deliberate effort. True progress happens when organisations understand that leadership potential is not tied to a single profile or personal circumstance. Valuing varied life experiences, including those shaped by caregiving, strengthens leadership culture and builds resilience.

Navigating bias and scepticism has been a defining part of my professional journey. As a woman and a mother, I have often encountered the unspoken assumption that professional ambition must take a backseat to family life, a bias rarely applied to men. Yet this is not about choosing one over the other; it is about integration. Early on, I realised that women with young children are frequently expected to prove they are prioritising work in order to be taken seriously. My response was consistency, results, and a clear message: commitment is not gendered.

Even today, driving DEI initiatives at an executive level remains challenging. Despite progress, women remain underrepresented in decision-making spaces. In my experience, around 80% of strategic meetings still involve only men, particularly when critical decisions are being made. One of the greatest challenges is feeling like an equal, owning expertise, and expressing it with confidence in environments where women are often required to repeatedly prove their competence, while male colleagues are assumed to be capable by default. This imbalance makes DEI both essential and deeply personal to lead.

There are still specific gender dynamics within the energy sector that influence career progression. Women, especially mothers, are more frequently questioned about long-term commitment or availability. There remains an unequal expectation to prove expertise. While these dynamics are evolving, progress is slow. Acknowledging them and addressing them without penalising different life experiences is essential for building an inclusive, high-performing industry.

To young women entering the solar and renewable energy sector today, my advice is simple: believe in your voice and your contribution from day one. This industry needs critical thinkers, communicators, and leaders who reflect the diversity of society. Do not allow outdated assumptions to shape your path. Seek mentors who support your growth and organisations that recognise potential beyond traditional models. Being a woman is not a limitation, even when you are the only one in the room. Trust your expertise, ask questions boldly, and bring your full self to the table. The sector will be stronger for it.

Alba Sande is an administrative and regulatory lawyer specialised in energy, environment, and infrastructure. After several years advising major national and international clients at Clifford Chance Madrid, she founded Asandelegal, a boutique legal practice focused on strategic regulatory support for the energy transition. Her experience includes advising banks, funds, and energy companies on permitting, litigation, and regulatory matters in large-scale renewable energy projects—especially wind, solar PV, and storage. Alba holds a double degree in Law and Economics (ICADE) and a Master’s in Energy from the Spanish Energy Club. She is a regular contributor to industry publications and a speaker at sectoral forums. As a woman and mother working in a traditionally male-dominated industry, she is an advocate for inclusive leadership and visibility of diverse talent in energy law and infrastructure. She believes that legal certainty, diversity, and sustainability must go hand in hand to meet the challenges of the green transition.

Interested in joining Alba Sande and other women industry leaders and experts at Women in Solar+ Europe? Find out more: www.wiseu.network

  •