Normal view

Received yesterday — 31 January 2026

DKEM seeks $57.5 million in twin patent suits against Chinese PV rivals

30 January 2026 at 15:15

Wuxi DK Electronic Materials is pursuing two patent infringement cases against domestic competitors, seeking injunctions, equipment destruction, and combined damages of CNY 400 million ($57.5 million).

Wuxi DK Electronic Materials has filed two patent infringement lawsuits with the Jiangsu High People’s Court against Jiangsu Riyu Photovoltaic New Materials and Suzhou Jinyin New Materials Technology , seeking CNY 200 million in damages and related legal costs in each case.

The company said both filings have been formally accepted and registered by the court, although hearing dates have not yet been scheduled.

The lawsuits concern two Chinese invention patents, ZL201180032359.1 and ZL201180032701.8, covering thick-film conductive paste formulations for semiconductor devices, including solar cells. DKEM said the patents are held by its subsidiary Solamet Electronic Materials and relate to lead-tellurium-lithium and oxide-based paste technologies.

DKEM is seeking injunctions to halt the manufacture, sale, and offering for sale of the allegedly infringing pastes. The company is also requesting the destruction of dedicated production equipment and molds, and compensation for economic losses, enforcement costs, and related expenses.

The patents trace back to the intellectual property portfolio of DuPont’s former Solamet photovoltaic paste business, acquired by another entity in 2021 for $190 million. DKEM later consolidated control of the Solamet assets and associated intellectual property.

Suzhou Jinyin is described in Chinese financial reporting as a leading supplier of front-side silver paste for solar cells, ranking third globally by market share. Founded in 2011, it was later acquired by listed electronics firm Suzhou Good-Ark Electronics. Jiangsu Riyu is a fast-growing paste supplier that filed a Hong Kong listing application in 2025, with plans to expand into n-type and back-contact paste products.

This follows earlier high-value patent actions by DKEM. In 2025, its subsidiary filed a suit against Zhejiang Guangda Electronic Technology seeking similar remedies. A Solamet-linked entity also pursued related claims against Changzhou Juhe New Materials in 2021, with domestic and overseas disputes reportedly settled in August 2022.

Separately, DKEM flagged earnings pressure, forecasting a net loss of CNY 200 million to CNY 300 million for 2025, primarily linked to non-operating factors, according to Chinese financial media.

Agrivoltaics can help lettuce survive extreme heat

30 January 2026 at 14:01

Scientists have grown organic romaine lettuce under 13 different types of PV modules, in an unusual hot Canadian summer. Their analysis showed lettuce yields increased by over 400% compared to unshaded control plants.

A research group from Canada’s Western University has investigated the performance of organic romaine lettuce, a heat-sensitive crop, under a broad range of agrivoltaic conditions. The test was conducted in London, Ontario, in the summer of 2025, during which 18 days had temperatures over 30 C.

“Our study explores how agrivoltaic systems can be tailored to optimize crop growth, especially under extreme heat conditions, while contributing to sustainable energy generation,” corresponding researcher Uzair Jamil told pv magazine.

“This becomes especially relevant in the context of climate change, where we are experiencing temperature extremes across the world,” Jamil added. “We examined the performance of organic romaine lettuce under thirteen different agrivoltaic configurations – ranging from crystalline silicon PV to thin-film-colored modules (red, blue, green) – in outdoor, high-temperature stress conditions.”

More specifically, the experiment included c-Si modules with 8%, 44% and 69% transparency rate; blue c-Si modules with transparency of 60%, 70%, and 80%; green c-Si modules with transparency of 60%, 70%, and 80%; and red c-Si modules with transparency of of 40%, 50%, 70%, and 80%.

All agrivoltaics installations had a leading-edge height of 2.0 m and a trailing-edge height of 2.8 m, and the modules were oriented southwards at 34◦. Pots with organic romaine lettuce were placed under all configurations, along with three pots fully exposed to ambient sunlight without shading, used as controls.

In addition to measurements against the control, the scientific group has compared the results to the national average per-pot yield for 2022, which included less high-temperature days and was therefore considered typical. Those data points were taken from agricultural census data, which later enabled the researcher also to create nationwide projections of their results.

“Lettuce yields increased by over 400% compared to unshaded control plants, and 200% relative to national average yields,” Jamil said about the results. “60% transparent blue Cd-Te and 44% transparent crystalline silicon PV modules delivered the highest productivity gains, demonstrating the importance of both shading intensity and spectral quality in boosting plant growth.”

Jamil further added that if agrivoltaic were to scale up to protect Canada’s entire lettuce crop, they could add 392,000 tonnes of lettuce.

“That translates into CAD $62.9 billion (USD $46.6 billion) in revenue over 25 years,” he said. “If scaled across Canada, agrivoltaics could also reduce 6.4 million tonnes of CO2 emissions over 25 years, making it a key player in reducing the agricultural sector’s environmental footprint.”

The results of the research work were presented in “Enhancing heat stress tolerance in organic romaine lettuce using crystalline silicon and red, blue & green-colored thin film agrivoltaic systems,” published in Solar Energy.

Chinese PV Industry Brief: Polysilicon output set to fall by 15% in January

30 January 2026 at 14:00

Polysilicon trading in China remained largely inactive, with production cuts accelerating and wafer prices falling week on week, while downstream cell prices continued to rise and module prices held steady, according to a trade group representing China's nonferrous metals sector.

The China Nonferrous Metals Industry Association (CNMA) said polysilicon trading remained largely stalled, with only limited exploratory orders completed. One leading producer has halted operations, while two others have implemented production cuts. January output is expected to fall by about 15% month on month, broadly in line with wafer production schedules, with February output forecast at 82,000 to 85,000 metric tons. The association said most wafer prices declined week on week, with average transaction prices at CNY 1.26 per piece for n-type G10L wafers, down 3.82%; CNY 1.32 for n-type G12R wafers, down 7.04%; and CNY 1.52 for n-type G12 wafers, down 8.43%. Downstream cell prices rose to CNY 0.41/W to CNY 0.45/W, up 4.88%, while module prices were stable at CNY 0.71/W to CNY 0.75/W.

Hoymiles has signed a supply contract with Indian renewable energy solutions provider KOSOL Energie to deliver 360 MW of its HMS series microinverters in 2026. The company said the products are optimized for India’s high-temperature, high-humidity, and high-irradiance conditions, as well as for larger module formats, large-scale commercial and industrial rooftops, and complex grid environments.

Boway Alloy has issued a profit warning, forecasting full-year 2025 net profit attributable to shareholders of CNY 100 million to CNY 150 million, down 88.9% to 92.6% year on year. The China-listed parent of Vietnam-based Boviet Solar said the decline reflects impairment charges linked to high US anti-dumping and countervailing duties on Vietnam-manufactured products, which made relocating production uneconomic, as well as reduced subsidies and order losses at its United States subsidiary following passage of the United States “Big and Beautiful” Act. Boway Alloy said it is exploring equity divestment options.

PowerChina has signed an engineering, procurement and construction (EPC) contract through its Colombia branch for a 251 MW solar project in Santander province, Colombia. The scope includes PV plant development, equipment supply, installation and commissioning, with a string inverter plus tracking system configuration intended to improve generation efficiency and operational stability.

Deye said it submitted an application on Jan. 27 to issue H shares and list on the main board of the Hong Kong Stock Exchange. The company said its listing application materials were published on the exchange’s website the same day.

Early tropical storm cuts solar in Philippines, while East Asia sees La Niña gains

30 January 2026 at 12:45

In a new weekly update for pv magazine, Solcast, a DNV company, reports that in January most of East Asia experienced normal to above-average solar irradiance, with southeastern China seeing surges due to reduced clouds and low aerosol levels under lingering La Niña effects. In contrast, the Philippines faced below-average irradiance from early Tropical Storm Nokaen, while other regional cities like Seoul, Tokyo, and Taipei recorded modest gains.

Most of East Asia recorded normal to above‑normal solar irradiance in January, as weak La Niña conditions continued to influence regional weather patterns. The largest gains were observed across southeastern China, where suppressed cloud formation and reduced aerosol-effects delivered a strong start to the year for solar operators, while unusual early tropical storm activity brought significant rainfall and irradiance losses to parts of the Philippines. With two days left in January at time of publishing, this data uses live data from 1-29 January, and forecasts for 30-31 Jan from the Solcast API.

Irradiance in southeastern China surged well above historical averages in January, with Hong Kong exceeding 25% above average. A dominant Siberian high pressure system, with temperatures in parts of Siberia more than 10 C below normal, extended into western China. The resulting northerly flow delivered drier air into southeastern China, reducing both precipitation and cloud formation. This irradiance pattern aligns with typical La Niña effects, even though the La Niña signal was weak and fading toward neutral by late January. Additionally, lower than normal aerosol levels contributed to above average irradiance in coastal parts of China.

In a continuation of the irradiance and aerosol pattern seen in 2025, many parts of China, in particular low-lying industrial areas saw significant drops in aerosol load and a corresponding increase in available irradiance. Both Hong Kong and Shanghai regions saw significantly lower winter average aerosol loads, than the historical average for winter months from 2007-2026. Whilst this supported the exceptionally high irradiance in Hong Kong through January, Shanghai recorded slightly above-average irradiance, despite experiencing a rare snowfall late in the month. By contrast, Beijing has historically lower aerosol loads, however still saw slightly below-average irradiance due to prevailing cloud levels.

Elsewhere in East Asia, irradiance levels were generally normal to above normal for this month. Seoul and Tokyo recorded irradiance 5–10% above January averages and Taipei saw gains exceeding 10%. Across the maritime continent, irradiance and precipitation anomalies were near normal.

The most significant negative irradiance anomaly in the region was associated with Tropical Storm Nokaen (Ada), which marked an unusually early start to the 2026 Pacific typhoon season. Making landfall in January—the first such occurrence since 2019— Nokaen delivered intense rainfall and heavy cloud cover to the central and northern Philippines. Daily rainfall totals reached up to 200 mm, triggering mudslides and widespread disruption. Irradiance across the northern Philippines dropped by as much as 10% below average, while the southern parts of the archipelago, spared from the worst of the storm, saw irradiance climb to 10% above average.

Solcast produces these figures by tracking clouds and aerosols at 1-2km resolution globally, using satellite data and proprietary AI/ML algorithms. This data is used to drive irradiance models, enabling Solcast to calculate irradiance at high resolution, with typical bias of less than 2%, and also cloud-tracking forecasts. This data is used by more than 350 companies managing over 300 GW of solar assets globally.

Study finds much lower-than-expected degradation in 1980s and 1990s solar modules

30 January 2026 at 12:21

Researchers at SUPSI found that six Swiss PV systems installed in the late 1980s and early 1990s show exceptionally low degradation rates of just 0.16% to 0.24% per year after more than 30 years of operation. The study shows that thermal stress, ventilation, and material design play a greater role in long-term module reliability than altitude or irradiance alone.

A research group led by Switzerland's University of Applied Sciences (SUPSI) has carried out a long-term analysis of six south-facing, grid-connected PV systems installed in Switzerland in the late 1980s and early 1990s. The researchers found that the systems’ annual power loss rates averaged 0.16% to 0.24%, significantly lower than the 0.75% to 1% per year commonly reported in the literature.

The study examined four low-altitude rooftop systems located in Möhlin (310m-VR-AM55), Tiergarten East and West in Burgdorf (533m-VR-SM55(HO)), and Burgdorf Fink (552m-BA-SM55). These installations use ventilated or building-applied rooftop configurations. The analysis also included a mid-altitude utility-scale plant in Mont-Soleil (1270m-OR-SM55) and two high-altitude, facade-mounted systems in Birg (2677m-VF-AM55) and Jungfraujoch (3462m-VF-SM75).

All systems are equipped with either ARCO AM55 modules manufactured by US-based Arco Solar, which was the world’s largest PV manufacturer with just 1 MW capacity at the time, or Siemens SM55, SM55-HO, and SM75 modules. Siemens became Arco Solar’s largest shareholder in 1990. The modules have rated power outputs between 48 W and 55 W and consist of a glass front sheet, ethylene-vinyl acetate (EVA) encapsulant layers, monocrystalline silicon cells, and a polymer backsheet laminate.

The test setup included on-site monitoring of AC and DC power output, ambient and module temperatures, and plane-of-array irradiance measured using pyranometers. Based on site conditions, the researchers classified the installations into low-, mid-, and high-altitude climate zones.

“For benchmarking purposes, two Siemens SM55 modules have been stored in a controlled indoor environment at the Photovoltaic Laboratory of the Bern University of Applied Sciences since the start of the monitoring campaign,” the researchers said. They also applied the multi-annual year-on-year (multi-YoY) method to determine system-level performance loss rates (PLR).

The results show that PLRs across all systems range from -0.12% to -0.55% per year, with an average of -0.24% to -0.16% per year, well below typical degradation rates reported for both older and modern PV systems. The researchers also found that higher-altitude systems generally exhibit higher average performance ratios and lower degradation rates than comparable low-altitude installations, despite exposure to higher irradiance and ultraviolet radiation.

The study further revealed that modules of the same nominal type but with different internal designs show markedly different degradation behaviour. Standard SM55 modules exhibited recurring solder bond failures, leading to increased series resistance and reduced fill factor. By contrast, SM55-HO modules benefited from a modified backsheet design that provides higher internal reflectance and improved long-term stability.

Overall, the findings indicate that long-term degradation in early-generation PV modules is driven primarily by thermal stress, ventilation conditions, and material design, rather than altitude or irradiance alone. Modules installed in cooler, better-ventilated environments demonstrated particularly stable performance over multiple decades.

The test results were presented in the paper “Three decades, three climates: environmental and material impacts on the long-term reliability of photovoltaic modules,” published in EES Solar.

“The study identified the bill-of-material (BOM) as the most critical factor influencing PV module longevity,” they concluded. “Despite all modules belonging to the same product family, variations in encapsulant quality, filler materials, and manufacturing processes resulted in significant differences in degradation rates. Early-generation encapsulants without UV stabilisation showed accelerated ageing, while later module designs with optimised backsheets and improved production quality demonstrated outstanding long-term stability.”

 

TOPCon cell prices rise for fourth week amid elevated silver costs and export rebate uncertainty

30 January 2026 at 08:14

In a new weekly update for pv magazine, OPIS, a Dow Jones company, provides a quick look at the main price trends in the global PV industry.

China’s TOPCon cell prices rose for a fourth consecutive week, led by higher production costs from surging silver prices and ongoing discussions around the removal of export tax rebates. In contrast, PERC cell prices declined amid weakening demand, due to the industry’s continued technological shift towards TOPCon cells, according to trade sources.

According to the OPIS Global Solar Markets Report released on January 20, Chinese TOPCon M10 cell prices were assessed 2.24% higher on the week at $0.0547/W Free-On-Board (FOB) China. Meanwhile, FOB China Mono PERC M10 cells fell 2.53% to $0.0463/W over the same period.

Have you missed our Webinar+ webinar on solar module procurement challenges? You can the full recording and resources from the session to catch up on key insights, strategies, and expert tips for navigating solar module procurement challenges.

Join us on Jan. 28 for pv magazine Webinar+ | The Solar Module Market Playbook: Managing pricing, risks, and other procurement challenges.

We analyzed real-time market data and offered insights to help EPCs, developers, investors, and distributors secure high-quality PV modules at competitive prices, thereby safeguarding project bankability.

Silver prices have surged to record highs, gaining more than 40% year-to-date, driven by rising industrial demand and increased investment flows. Chinese policy developments have also further tightened the market, with authorities introducing export restrictions on silver through 2027.

Under the new framework, only 44 approved companies are permitted to export silver under a quota-based licensing system, requiring exporters to secure approval for overseas shipments.

Market sources said silver prices have become a key variable for cell pricing, as silver now represents one of the largest cost components in TOPCon cell manufacturing. Several sources noted that even if upstream prices soften from Q2 2026, cell and module prices are unlikely to retreat to 2025 price levels should silver prices remain elevated.

Since the start of this year, downstream OPIS TOPCon cell prices have surged 46%, while TOPCon module prices climbed nearly 35%. Upstream cost increases have been more modest, with OPIS China Mono Premium—OPIS' assessment for mono-grade polysilicon used in N-type ingot production—up 0.15% and N-type wafer prices up around 13% over the same period.

This week, upstream polysilicon and wafers segments showed early signs of weakness, with OPIS China Mono Premium and N-type M10 wafers down 2.34% and 2.20%, respectively. In contrast, FOB China TOPCon modules continued to edge higher by 3.48% over the same period.

According to the China Nonferrous Metals Industry Association (CNMIA), sentiment in the wafer segment remained cautious this week, with upstream and downstream players locked in a stalemate. Despite continued price gains in cells and modules, driven by export tax rebate policy changes and rising silver prices, price increases have yet to effectively transmit upstream.

CNMIA noted that domestic end demand remains sluggish, and under cost pressure, cell manufacturers have become increasingly reluctant to accept high-priced wafers, resulting in few wafer procurement orders.

With downstream demand unlikely to recover meaningfully before the Lunar New Year, and polysilicon prices showing signs of softening, the wafer market is expected to stay weak in the near term, the association added.

Downstream sources added that higher production costs, combined with weak end-user module demand, could limit cell output levels in the longer term.

Market analysts have previously projected China’s installation demand to fall by over 20% in 2026, following the transition from feed-in-tariffs to a market-based electricity pricing mechanism. Furthermore, the planned removal of export tax rebates may weigh on overseas demand, reinforcing a bearish demand outlook for cells later this year, sources said.

OPIS, a Dow Jones company, provides energy prices, news, data, and analysis on gasoline, diesel, jet fuel, LPG/NGL, coal, metals, and chemicals, as well as renewable fuels and environmental commodities. It acquired pricing data assets from Singapore Solar Exchange in 2022 and now publishes the OPIS APAC Solar Weekly Report.

Dutch utility testing ‘silent’ residential heat pumps

30 January 2026 at 07:53

Dutch utility Eneco is testing low-noise air-to-water heat pumps from startup Whspr in around 20 homes, aiming to ease installation constraints near property boundaries. The systems reportedly achieve coefficients of performance of up to 5 and show up to 80% noise reduction in laboratory testing.

Dutch utility Eneco has begun testing an”innovative” type of air-to-water heat pump with low sound levels in residential buildings.

The company said conventional heat pumps rely on outdoor units that emit a constant hum, requiring installations several metres from property boundaries under Dutch building regulations and often forcing placement in prominent locations on terraced houses. By contrast, the “silent” heat pumps under test can be installed just 30 cm from the boundary.

“The pilot will provide insight into both ease of installation and real-world performance,” Eneco said in a statement. “The results will be used to further optimize the system, with the aim of making it widely available by the end of the summer.” The company added that around 20 homes are currently equipped with the systems to assess noise levels without “compromising residents’ everyday heating comfort.”

The heat pumps are supplied by Dutch startup Whspr. “Our 4 kW freestanding hybrid monoblock systems are designed for domestic space heating,” founder Hugo Huis in ’t Veld told pv magazine.

The unit measures 60 cm × 60 cm × 90 cm and weighs around 70 kg. “It is compact yet robust,” Huis in ’t Veld said, adding that initial measurements show efficiencies in line with the market, with coefficients of performance (COP) of between 4.5 and 5.0.

According to the manufacturer, the heat pump uses propane (R290) as its refrigerant and shows up to 80% noise reduction in laboratory testing.

Whspr also highlights ease of installation, stating that a single installer can fit and connect the unit, including the water side, in one day. A dedicated control and thermostat system has also been developed to reduce compatibility issues and simplify commissioning.

Further technical details have not yet been disclosed. “We are not at liberty to share designs at this stage, as patents are still pending,” Huis in ’t Veld said.

Eneco noted that pilot installations include both standard locations and more complex sites, such as rooftops and sheds at the end of gardens. The systems have also been installed in several rental homes owned by housing association Wooncompagnie. “Testing will continue until the end of April, after which the heat pumps will be further optimized,” the company said.

 

 

 

Korean scientists boost performance of tin monosulfide cells with new post-treatment

30 January 2026 at 06:54

Researchers in South Korea improved the performance of tin monosulfide (SnS) solar cells with a potassium fluoride-assisted post-treatment and a vapor transport deposition process. The treated solar cells had a power conversion efficiency of 4.10% and reduced recombination sites, compared to 3.42% for untreated devices.

Research led by Chonnam National University in South Korea has improved the performance of tin monosulfide (SnS) solar cells with a potassium fluoride-assisted (KF) post-treatment and a vapor transport deposition (VTD) process. The treated solar cells had a power conversion efficiency of 4.10% and reduced recombination sites, compared to control devices.

The research topic is complementary to the research group's earlier germanium oxide (GeOx) interlayer study, which achieved a 4.81% cell efficiency, according to first author of the research, Rahul Kumar Yadav.

“The KF treatment enhances the intrinsic quality of the SnS absorber surface, providing a superior foundation for subsequent interface engineering, while the GeOx interlayer optimizes band alignment and suppresses recombination at the rear contact,” Kumar Yadav, told pv magazine.

“In our ongoing work, we are actively combining KF surface treatment with GeOx back interface engineering, as we expect their integration to deliver further gains in voltage, operational stability, and overall device efficiency,” he added.

In the study, the researchers varied the concentration of KF solution to measure the effect of drop-cast KF surface treatment on the structural, morphological, and photovoltaic properties of VTD-SnS absorber layers.

Testing showed that the KF treatment enhanced “film uniformity, densification, and wettability.” Devices based on the optimized KF-treated SnS absorber had a PCE 4.10%, an improvement compared to 3.42% for untreated devices, with further analysis revealing reduced recombination sites.

“The KF-assisted solution post-treatment functions as a surface modulation step, improving grain connectivity, reducing surface roughness, and passivating electrically active defects,” said Kumar Yadav, adding that the resulting higher open-circuit voltage and fill factor, enabled enhanced efficiency “without altering the overall device architecture.”

The researchers concluded that the research represents a “scalable strategy to overcome key interfacial limitations” and to advance SnS thin-film photovoltaics.

Also participating in the study were Korea Aerospace University and Kyungpook National University.

The work is detailed in “Modulating surface morphology via potassium fluoride-assisted solution post-treatment enables VTD-SnS thin film solar cells to achieve over 4% efficiency,” which appears in Materials Today Energy.

Looking ahead, the group is focused on developing SnS thin-film solar cells beyond the 4% efficiency threshold “through coordinated absorber surface, heterojunction interface, and rear interface engineering, while maintaining compatibility with scalable manufacturing processes,” said Kumar Yadav.

 

A closer look at Tesla’s new residential solar panels

30 January 2026 at 06:44

The new Tesla Solar Panel and mounting system pairs with the company’s inverter, Powerwall battery, EV charging and vehicles, creating an all-Tesla residential solar offering for the first time.

From pv magazine USA

In the residential solar sector, the industry has long sought the “holy grail” of vertical integration, creating a single point of contact for hardware, software, and energy management.

While Tesla has been a dominant player in storage with the Powerwall, a market leader with its inverter, and in electric vehicles, the company has historically relied on third-party solar panels.

With the launch of the Tesla Solar Panel (TSP-415 and TSP-420), the company is closing that loop. The company’s new modules, assembled at its Gigafactory in Buffalo, New York, represent a significant shift toward a proprietary, integrated ecosystem designed to solve the common rooftop challenges of shading, aesthetic clutter, and installation friction.

“This panel completes the full package of the residential energy ecosystem,” Colby Hastings, senior director, Tesla Energy, told pv magazine USA. “It is based on our long history of innovation and engineering when it comes to solar.”

Domestic manufacturing

Tesla said the new modules are assembled at its Buffalo, NY facility, the same site where it continues to produce Solar Roof components, which inspired the design of the panel. The factory is currently scaling to an initial capacity of over 300 MW per year.

This domestic assembly allows Tesla to leverage federal manufacturing incentives while securing a local supply chain for its growing network of installers.

Power zones

The most technically significant departure from industry norms in the TSP series is the implementation of 18 independent “Power Zones.” Standard residential modules typically utilize three bypass diodes, creating six distinct zones. In traditional architectures, a single shadow from a chimney or vent pipe can effectively “shut down” large swaths of a string’s production.

Tesla’s design essentially triples the granularity of the module. By dividing the electrical architecture into 18 zones, the panel behaves more like a digital screen with a higher pixel count; if one “pixel” is shaded, the remaining 17 continue to harvest energy at near-peak efficiency.

Image: Tesla

While high-density substring architectures have been explored in the utility space, Tesla’s specific 18-zone layout is unique to the residential market, engineered to deliver optimizer-like performance without the added cost and potential failure points of module-level power electronics (MLPE) on the roof.

Inverters, batteries, and mounts

The TSP modules are designed to pair specifically with the Tesla Solar Inverter and Powerwall 3. While Tesla offers these as a unified “Home Energy Ecosystem,” they are not strictly sold as a single, inseparable bundle. However, the hardware is optimized to work as a package; for instance, the panel’s 18-zone design is specifically tuned to perform with Tesla’s string inverter technology.

Tesla is not keeping this technology exclusive to its own crews. While Tesla’s direct installation business leads the rollout, the package is available to Tesla’s network of over 1,000 certified installers.

This “installer-first” approach is further evidenced by the new Tesla Panel Mount. The new rail-less mounting system, made of black anodized aluminum alloy, uses the module frame itself as the structural rail.

The new rail-less mounting system, made of black anodized aluminum alloy, uses the module frame itself as the structural rail.
Image: Tesla

By eliminating traditional rails and visible clamps, Tesla said the system is 33% faster to install. The mount sits closer to the roof and is enhanced by aesthetic front and side skirts, maintaining the “minimalist” look Tesla consumers expect.

Product specs

The modules are competitive with the current Tier 1 market, pushing into the 20% efficiency bracket while maintaining a robust mechanical profile, said the company.

Parameter  TSP-415  TSP-420 
Nominal Power (Pmax)  415 W  420 W 
Module Efficiency  20.3%  20.5% 
Open Circuit Voltage (Voc)  40.92 V  40.95 V 
Short Circuit Current (Isc)  12.93 A  13.03 A 
Max System Voltage  DC 1000V  DC 1000V 
Weight  22.3 kg (49 lbs.)  22.3 kg (49 lbs.) 
Dimensions  1805 x 1135 x 40 mm  1805 x 1135 x 40 mm 

 The new Tesla Solar Panels are now available nationwide. 

Solar roof 

For those wondering about the Tesla Solar Roof, the company maintains that the glass tile product remains a core part of its “premium” offering for customers needing a full roof replacement.

The cascading cell technology used in the new TSP modules, which overlaps cells to eliminate visible silver busbars, was originally designed in its Solar Roof product. Tesla is essentially taking the aesthetic and electrical innovations of its luxury roof product and integrating it into a traditional module form factor.

Virtual power plant

Tesla also highlighted the ability for virtual power plant (VPP) participation to increase value for its customers. VPPs coordinate the dispatch of energy stored in Powerwalls, acting as a distributed energy network. 

“We’re working more closely with utilities than ever to ensure that these assets participate in virtual power plants and support the grid and opening up new value streams, both for utilities and consumers that have these assets at home,” said Hastings. “We announced recently that we have a million Powerwalls deployed worldwide and 25% of those are enrolled in a virtual power plant program of some kind.”

Market strategy

The timing of this launch comes at a volatile moment for U.S. solar. With the passage of the “One Big Beautiful Bill” Act (OBBBA), the industry is navigating the early expiration of the 25D residential credit at the end of 2025 and the sunsetting of the 48E commercial credit.

Tesla’s move now is an opportunistic play for standardization and soft-cost reduction. By controlling the entire stack, Tesla can drive down customer acquisition and labor costs, which currently represent the largest portion of a system’s price tag.

“Utility rates across the country are going up, electricity is becoming increasingly unaffordable for homeowners,” said Hastings. “We’re still very bullish on the future of distributed energy here in the United States.”

Moonwatt brings DC-coupled, passively cooled sodium-ion tech to solar projects

29 January 2026 at 12:57

The Dutch start-up, founded by former Tesla leaders, is taking a novel approach to sodium-ion battery technology, optimizing it for integration with solar power plants. Its technology is set to be deployed for the first time in a Dutch solar-plus-storage project later this year.

From ESS News

Amsterdam-based Moonwatt has developed a new type of battery storage system based on sodium-ion NFPP chemistry, purpose-built for seamless solar hybridization. The system integrates battery enclosures with hybrid string inverters, enabling efficient DC-coupled solar-plus-storage integration.

The company gained attention in March 2025 when it raised $8.3 million in seed funding to accelerate growth. Moonwatt operates as an energy storage system integrator, designing, developing, and supplying string battery enclosures, hybrid string inverters, and battery management and site control systems, while sourcing sodium-ion cells globally.

“Initially, we’re sourcing them from Asia, but we aim to add American and European cell sourcing options as soon as they become available and create value for our customers,” Valentin Rota, co-founder and CCO of Moonwatt, said in an earlier interview with ESS News.

To continue reading, please visit our ESS News website.

Solar-Powered Boat Travels Into France

28 January 2026 at 17:18

The last time I watched a True North solar-powered boat video, he was slowly moving on a journey of about 200 miles and on electricity from his boat’s solar panels. He constructed his own boat with rooftop solar and an electric motor for propulsion, an Epropulsion 6 kW. There are ... [continued]

The post Solar-Powered Boat Travels Into France appeared first on CleanTechnica.

Solar-Powered Boat Travels Into France

28 January 2026 at 17:18

The last time I watched a True North solar-powered boat video, he was slowly moving on a journey of about 200 miles and on electricity from his boat’s solar panels. He constructed his own boat with rooftop solar and an electric motor for propulsion, an Epropulsion 6 kW. There are ... [continued]

The post Solar-Powered Boat Travels Into France appeared first on CleanTechnica.

Received before yesterday

Chinese PV Industry Brief: Longi, Tongwei announce losses for fiscal 2025

23 January 2026 at 15:15

Longi, and Tongwei have predicted steep losses for fully fiscal year 2025, as persistent oversupply and falling solar module prices continue to pressure margins across China’s PV manufacturing sector.

Tongwei said it expects to post a net loss of CNY 9 billion ($1.29 billion) to RMB 10 billion for full fiscal year 2025. The polysilicon and module manufacturer said this loss is largely due to continued low pricing throughout the solar value chain, which has eroded margins, rising costs for key raw materials, and a persistent imbalance between supply and demand in the photovoltaic market. Tongwei posted a net loss of CNY 7.04 billion for 2024, down 152% from a net profit of CNY 13.58 billion in the preceding year, marking its first annual loss since listing.

Longi said it expects a net loss attributable to shareholders CNY 6 billion to CNY 6.5 billion for the fiscal year 2025. The company said the expected loss is mainly attributable to ongoing structural pressures in the photovoltaic industry — especially a persistent imbalance between supply and demand, which has kept solar product prices very low and intensified internal price competition. In 2024, the company posted a net loss of CNY 8.62 billion, down from a profit of CNY 10.75 billion in 2023, as annual revenue fell 36.2%. Longi also announced it signed a framework agreement with European distributor Brandmerchandising B.V. under which the partner will procure 300 MW of HPBC 2.0 high-efficiency modules.

JinkoSolar has announced distribution agreements totaling nearly 300 MW for its Tiger Neo 3 modules with Thailand-based UTI Energy, Solar Touch, JTN Energy, and IAN Solar, expanding its footprint in the Southeast Asian market. The company also announced its controlling subsidiary, Haining Jinko, plans to introduce strategic investors including Xingyin Asset Management and China Orient Asset Management through a capital increase of up to CNY 3.0bn ($412m) for a stake of no more than 24.68%. The proceeds will be used primarily to repay debt. JinkoSolar said it will waive its pre-emptive rights but retain an indirect holding of at least 68.94%, leaving control unchanged.

Trina Solar secured two supply agreements with ACWA Power covering utility-scale projects in Saudi Arabia. Trina will deliver 1.15 GW of modules for the Haden solar project and 900 MW of trackers for the 1.5 GW Al Khushaybi project. Both projects are scheduled for completion by July 2026, with grid connection planned for February 2027.

China Huadian Group has released its 2026 centralized PV module procurement tender, split into two lots of 6 GW and 2 GW, with minimum module efficiency requirements of 23.8% and 22.8%, respectively.

‘I would encourage women to be attentive to how men address each other’

23 January 2026 at 14:35

This week Women in Solar+ Europe gives voice to Melodie de l'Epine, Senior Project Manager/ Head of Research & Innovation at France's Becquerel Institute. She says that ncouraging men to shift from strict hierarchy to informal exchanges fosters more equitable rapport. Women can benefit from noticing how men address each other and consciously joining in, since subtle forms of address strongly shape power perceptions.

Our industries operate in a context of constant fluctuation. Policy frameworks change, market conditions evolve rapidly, and uncertainty is part of our daily reality. This means that, as an industry, we must be creative, adaptable, and resilient. From my perspective, the more diverse our teams are, the wider and more varied their experiences become. This increases the likelihood that we will find the viewpoint, the idea, or the understanding that allows us to adapt with resilience to changing environments. This richness of thought and experience is something our industry greatly benefits from, not only because we need it, but also because we tend to have a higher participation rate of women than many other energy sectors.

Looking back at my own career, the barriers I encountered were often systemic rather than explicit. In France, at least, I have found that respectfully encouraging men to move away from a strictly hierarchical viewpoint and into more informal exchanges has been incredibly useful in creating more equitable rapport. I would encourage women to be attentive to how men address each other and to consciously include themselves in this form of address. It is subtle, but forms of address underpin human perceptions in powerful ways.

At the same time, my knowledge and understanding have often been underestimated. In those situations, a willingness to raise my hand and demonstrate what I know has been fundamental in my roles. It is not easy to be visible, particularly when you feel you need to prove your competence, but learning to have confidence in myself was an important lesson in my professional development.

In terms of gender inclusion in leadership, I have observed meaningful shifts over time. Working in fields and jobs that have meaning and contribute to the greater good has often been a preferred pathway for women, and renewable energy clearly aligns with this motivation. However, reaching leadership roles has historically been hindered by several factors: the lower share of women in management positions, unconscious bias, and the commitment many women continue to have to home responsibilities. A generation of more accessible parental leave for fathers, alongside legislation mandating greater representation of women, is beginning to change this dynamic. I am thankful that in France, some major companies have clearly demonstrated their trust in women in leadership positions, ENGIE being one example.

I have also seen very tangible impacts from having diverse leadership teams. In my experience, diverse leadership has demonstrated that caring for the holistic wellbeing of employees and team members is both acceptable and beneficial. Women, at least in my experience, tend to be able to express this care more easily than men. I have seen women leaders identify and propose accommodations for employees experiencing stressful or difficult conditions at home much more regularly, often drawing on personal experience. The outcomes have been very positive, particularly in terms of anticipating work deadlines and making room for quality deliverables despite complicated availability.

An inclusive environment has also played an important role in my own career progression. I have teenagers, and when they were born and throughout their younger childhood, I was able to adapt my working hours and durations to be compatible with my care plans. That flexibility meant that I could concentrate fully on work when I was at work, without guilt, because I was also able to give my children the time I wanted to give them. French legislation has, of course, enabled this across the board. However, what truly made a difference was the attitude of my employer. This flexibility was welcomed as an opportunity to experiment with new people and new roles, rather than being seen as a constraint, and that made a significant difference to my experience.

For young women entering the solar and renewable energy industry today, my advice is grounded in experience. I believe we can change people’s perceptions by expecting the best of them. Expect men to treat you as their equal, and demonstrate this expectation through the way you work with them. Grow your own confidence—others cannot do it for you—and be conscious of your achievements. Know that you are valuable, that you can and will learn, and that a task is only undoable until you learn how to do it. Finally, do not hesitate to ask for advice and support from other women. We have been there too.

Mélodie de l’Épine is Head of Research & Innovation at the Becquerel Institute France, where she leads strategic analysis, market research and innovation programmes in photovoltaic energy. Recognised as a leading expert in the French PV sector with over 25 years of experience, she has previously coordinated the photovoltaic unit at HESPUL and contributed to national and institutional working groups on grid connection, support mechanisms and energy policy. Today, Mélodie works on European innovation projects spanning new PV technologies, manufacturing and operations, while also engaging in international collaborations, where she is co-manager of Task 1 for the International Energy Agency’s PVPS Programme. She regularly publishes market analyses and contributes to national and international reports on PV power applications, helping shape strategic insight into market trends and policy developments. 

Interested in joining Mélodie de l’Épine and other women industry leaders and experts at Women in Solar+ Europe? Find out more: www.wiseu.network

Aerosol divide in 2025 brings clearer skies to China and smoke to Europe

23 January 2026 at 14:03

In a new weekly update for pv magazine, Solcast, a DNV company, reveales that last year extreme Canadian wildfires drove aerosol levels around 30% above normal, sharply reducing solar irradiance across Canada and even impacting Europe, while the Congo Basin also saw worsening aerosol conditions. In contrast, China and South America experienced unusually low aerosol levels, supporting stronger solar irradiance due to cleaner air, reduced fires, and favorable climate and policy conditions.

Aerosol anomalies in 2025 reveal the outsized impact of Canadian wildfires on solar conditions, with smoke and particulates from one of the worst fire seasons in the country’s history driving major reductions in solar irradiance across Canada and beyond. While Canada saw a marked increase in aerosol loading, China and South America experienced anomalously low levels, supporting stronger irradiance conditions. Meanwhile, the Congo Basin registered worsening aerosol conditions, highlighting growing concerns for central Africa's solar outlook, according to analysis using the Solcast API. Aerosols impact solar irradiance by scattering and absorbing solar radiation as it passes through the atmosphere, when calculated this effect is called ‘aerosol extinction’.

Across Canada, 2025 aerosol extinction values were around 30% above climatological norms, indicating significantly higher levels of sunlight absorption and scattering by particulate matter. This spike is directly linked to the extreme wildfire season, with the total burned area in 2025 reaching twice the 10-year average. The timing of the peak fire activity, which aligned with the high-irradiance months of May and June, compounded the impact on solar conditions.

Smoke plumes from Canada were transported across the Atlantic by prevailing westerly winds, impacting solar production as far as Western Europe, where they overlapped with Spain's worst wildfire season in over a decade, further amplifying the regional aerosol burden.

Despite having a higher aerosol load than other solar generation regions, China experienced one of its cleanest atmospheric years in recent history. Aerosol extinction anomalies were approximately 20% below the recent climatology, driven by a combination of favourable meteorological patterns and continued reductions in industrial emissions. These conditions supported a strong irradiance performance throughout the past year when irradiance was already tracking 30% above average.

South America also recorded a notable improvement in aerosol conditions following a turbulent 2024. Anomalies in 2025 were generally 20% to 30% below average, allowing for clearer skies across the region. Solar production in Brazil, benefited from reduced smoke associated with a 45% reduction in burned areas within the Amazon Basin, as detected by the DETER satellite system. This significant decrease is part of a broader post-Bolsonaro shift in environmental management, further supported by La Niña-associated wetter conditions that helped suppress fire activity.

Meanwhile, the Congo Basin experienced worsening aerosol conditions, with extinction anomalies 20% to 30% above climatology. Unlike the declining trends in Saharan dust seen across northern Africa, this spike in aerosols is attributed to increasing fire activity within wet forest regions. The number of active fires in these forests has doubled over the past two decades, largely due to a combination of hotter, drier weather and anthropogenic factors such as conflict or agricultural-driven deforestation

Solcast produces these figures by tracking clouds and aerosols at 1-2km resolution globally, using satellite data and proprietary AI/ML algorithms. This data is used to drive irradiance models, enabling Solcast to calculate irradiance at high resolution, with typical bias of less than 2%, and also cloud-tracking forecasts. This data is used by more than 350 companies managing over 300 GW of solar assets globally.

Solar PV will have a major role in marshalling our productivity to create a sustainable civilization

23 January 2026 at 13:04

In all ages, humankind decided to spend considerable amounts of the available productivity on special monumental projects. Managing climate change and rebalancing within the planetary boundaries is such an activity. The enormous energetic productivity of solar PV may evolve as the central pillar to create a sustainable civilization.

Since civilizations have existed, monumental projects have been undertaken, such as the Pyramids of Giza, the Great Wall of China, the Gothic cathedrals, or the Apollo programme. Substantial labour and resources were invested in such projects, ranging from 0.5% up to 10% of the available productivity in the respective society, and lasting between a few years and more than a century. Such monumental projects can be grouped into five categories: culture, infrastructure, technology, war and conflict, and disaster response. A recent study from Forschungszentrum Jülich, Helmholtz Institute Erlangen Nürnberg for Renewable Energies and LUT University entitled Marshalling our productivity to create a sustainable global civilization investigated monumental projects and their link to excess productivity.

Since the industrial revolution, unprecedented wealth around the world, along with an enormous increase in life expectancy, reduction of infant mortality, reduction of starvation, freeing people from poverty, and creating unparalleled standards of living for many. These benefits were made possible by an ever-increasing use of fuel. At the same time, excessive fossil fuel consumption has led to various repercussions, in particular environmental destruction and climate change.

Reaching a global net-zero emission energy system can be considered a monumental project. Depending on different sources, such as McKinsey, BNEF, the International Energy Agency, or the United Nations, the required annual expenditures to achieve this goal may lie between 0.7 and 1.3% of the global gross domestic product (GDP) to be allocated for a few decades. Such expenditures are in the range of accepted societal choices in the past, for instance the military spending during the Cold War (3% of GDP of the United States for decades, for example) or the Belt and Road Initiative (an estimated 0.75% of GDP of China).

Solar PV gaining ground in the energy system driven by sustainability

The ongoing global energy transition has various facets, with solar PV at its core reaching over 70% of all newly installed power capacity in the world in the recent past as the fastest ramping energy source since the industrial revolution, and positioning solar PV as a prime energy supply solution around the world. Plummeting costs of solar PV and additional renewable energy technologies, complemented by growing battery storage, form the basis of a comprehensive electrification. Since the mid-1990s, global energy transition studies regularly find the contribution of solar PV to the global energy supply by mid-century to be in the order of about 70%.

The energetic sustainability of solar PV has been improved since the invention of the silicon solar cell. The rate at which solar panels have improved over time has been consistent and high for decades. For example, the energy required to make a solar panel has been reduced by 14% every time installations doubled between the 1970s and the 2010s. This learning has been enabled by continuously rising efficiencies, an increase in technology lifetimes, and a reduction in the use of materials per rated power output, as summarized in a recent publication by international PV experts. The energy payback time for PV systems ranges globally between 0.44 – 1.42 years and in Europe between 0.89 – 1.24 years depending on location. The low payback time also results in a large value for the energy returned on investment – a PV system that is operated for 30 years generates between twenty and seventy times the energy that was needed for its production. The lifetime of PV systems may be further increased up to 50 years in the longer term. System-level studies have shown that the energetic sustainability of solar PV remains robust even when accounting for additional energy investments required for batteries, complementary renewable energy technologies, and curtailment, both at global and regional scales.

Rebalancing withing safe and just planetary boundaries enabled by solar PV

Solar PV may emerge as the key driver for a sustainable civilization. This would mean supplying all humans with all needed energy for the highest standards of living, which is estimated to require 150-200 TWp of solar PV installations by the end of this century. A comprehensive Solar-to-X Economy across energy sectors will become a major characteristic in many regions around the world. The upper limit of the range of solar PV installations would even include the energy demand for massive carbon dioxide removal activities to rebalance civilization within safe und just planetary boundaries, which equals to about 10 – 12% of global primary energy supply and may cost about 0.4 – 0.7% of the global GDP to return to 1.0℃ with about 350 ppm of atmospheric CO2 concentration. In this way, PV installations could help in powering carbon dioxide removal to avoid global GDP loss of about 8% if the unintended consequences of our productivity are not addressed. Reaching permanent climate safety and its respective investments can be regarded as a highly profitable venture of civilization in the row of monumental projects in history. The high energetic productivity of solar PV is a major driver to reach a sustainable civilization.

Authors: Christian Breyer, Ian Marius Peters, and Dominik Keiner

This article is part of a monthly column by LUT University.

Research at LUT University encompasses various analyses related to power, heat, transport, desalination, industry, and negative CO2 emission options. Power-to-X research is a core topic at the university, integrated into the focus areas of Planetary Resources, Business and Society, Digital Revolution, and Energy Transition. Solar energy plays a key role in all research aspects.

Musk says remote parts of Spain and Sicily could generate Europe’s electricity

Elon Musk told the World Economic Forum in Davos that the lowest-cost energy for AI could come from solar power generated in space. He also suggested that sparsely populated areas of Spain and Sicily could serve as Europe’s “power plants.”

“We are in the most interesting era in history.” This is how Elon Musk opened his remarks at the World Economic Forum in Davos, speaking with BlackRock Chairman and CEO Larry Fink.

Musk highlighted the potential of solar and battery storage in the United States. “Solar energy and batteries alone could supply half of the energy consumed in the US annually, requiring a negligible amount of space,” he said. “The same can be done in Europe: sparsely populated areas of Spain and Sicily could generate the electricty Europe needs.”

He noted that high tariffs complicate such plans in the United States. “SpaceX and Tesla are going to produce 100 GW per year at our plant in three years. I encourage others to do the same,” Musk said. “Despite the tariffs, China produces solar cells at a very low cost.”

Musk also noted that Tesla has begun using Optimus humanoid robots for basic factory tasks, expects them to handle more complex functions by 2026, and plans to make them available to the public in 2027.

“I believe the decisive factor for the deployment of AI is energy,” he said. “AI production is growing exponentially, but electricity is only growing by 4% per year. In 2026, we are going to produce more chips than we can power.”

He added that China is increasing energy generation to meet demand, largely through solar energy.

Looking further ahead, Musk suggested that the lowest-cost energy for AI could come from space. The plan is to transmit solar energy generated in space to Earth, a goal he expects to achieve within two to three years.

He closed on a hopeful note: “I want to encourage everyone to be optimistic and have hope for the future. You lead a better life if you are optimistic and your predictions don't come true, than if you are pessimistic and they do.”

Ikea, Svea Solar launch dynamic electricity tariff in Germany

23 January 2026 at 09:46

Ikea is expanding its energy offerings in Germany with a dynamic electricity tariff in partnership with Svea Solar, changing every 15 minutes based on day-ahead market prices and available even to customers without its PV systems, storage solutions, or heat pumps.

From pv magazine Germany

Ikea is expanding its energy footprint in Germany. After offering PV systems, balcony solar panels, storage solutions, wallboxes, and heat pumps, the retailer now provides a dynamic electricity tariff. Prices fluctuate every 15 minutes according to activity on the day-ahead electricity market.

The offer is in partnership with the German subsidiary of Swedish PV installer Svea Solar. Ikea acts solely as an intermediary, while Svea Solar is the contractual partner. Customers can subscribe to the tariff without owning any solar or storage systems. Germany is the first market worldwide where Ikea is introducing this tariff.

Called Svea Strom, the tariff supplies electricity exclusively from TÜV-certified renewable sources. An app displays expected electricity prices for the following day. Ikea has not detailed the calculation method for the energy charge but confirmed there is no price cap. A test inquiry with Svea Solar indicated a two-cent-per-kilowatt-hour procurement fee on top of the market price. Network charges, taxes, levies, and surcharges also apply.

The monthly basic fee is €6.99 ($8.21) or €5.95 for Ikea Family and Ikea Business Network members. Members signing up by Feb. 1, 2026, receive a six-month fee waiver. After six months of loyalty, Ikea provides a €25 shopping voucher. The tariff is immediately available and can be canceled monthly.

Eligible households receive a free smart meter if electricity consumption exceeds 6,000 kWh per year or if a heat pump or wallbox is installed according to Section 14a of the German Energy Industry Act (EnWG).

Ikea projects households with battery storage could save around €300 per year, with potential savings up to €500 if a PV system, wallbox, or heat pump is installed.

“We want to make sustainable energy affordable and accessible for the many people, regardless of housing situation, income, or technical expertise,” said Jacqueline Polak, expert for sustainable energy solutions at Ikea Germany. “Our goal is to create more transparency, flexibility, independence, and social participation in the energy market. Sustainable energy should not be a privilege, but the new normal.”

China TOPCon solar module prices climb over 30% since mid-December

23 January 2026 at 07:19

In a new weekly update for pv magazine, OPIS, a Dow Jones company, provides a quick look at the main price trends in the global PV industry.

China’s TOPCon module prices rose for a third consecutive week, as market participants continued to digest the impacts of export rebates removal and higher cell prices. Beyond spot prices, prices along the forward curve have also edged higher, reflecting expectations that recent policy shifts could feed through to forward pricing.

According to the OPIS Global Solar Markets Report released on January 20, the Chinese Module Marker (CMM), the OPIS benchmark assessment for TOPCon modules from China, rose 12.75% on the week to $0.115/W Free-On-Board (FOB) China.

OPIS FOB China TOPCon module forward curve indications for Q2 2026 loading cargoes were assessed at $0.120/W, up 14.29% on the week. Forward prices for Q3 2026 loading cargoes moved higher to $0.121/W, rising 15.24% on the week.

Q4 2026 loading cargoes rose 10.42% week-on-week to $0.106/W while Q1 2027 loading cargoes saw the steepest increase of 13.5% to $0.109/W.

Struggling with solar module pricing, supply risks, and complex procurement decisions?

Join us on Jan. 28 for pv magazine Webinar+ | The Solar Module Market Playbook: Managing pricing, risks, and other procurement challenges.

We combine real-time market data, case studies, and an interactive Q&A to help EPCs, developers, investors, and distributors secure high-quality PV modules at competitive prices, thereby safeguarding project bankability.

According to one tier-1 producer, silver prices will remain a key variable. Even if upstream polysilicon prices were to soften from April onward, module prices would struggle to fall back to end-2024 levels of around CNY0.70 ($0.10)/W as long as silver prices stay at current levels. The producer added that buyers have largely accepted the higher price levels and expect the uptrend to persist.

However, some trade sources pointed to a lingering “wait and see” sentiment in the market, largely driven by uncertainty around upcoming policies, particularly China’s anti-monopoly measures, which may be limiting the full transmission of recent price increases.

While these measures are primarily focused on the polysilicon segment and the proposed consolidation platform, downstream market participants told OPIS they could also have implications for cell and module markets, where major producers have been operating under strict production and sales coordination arrangements for over a year.

Several producer sources said this could unintentionally intensify production and price competition in an industry already grappling with significant overcapacity. However, they noted that clearer regulatory guidance would still be needed before manufacturers adjust their production and sales strategies.

In early January, the Beijing Municipal Administration for Market Regulation initiated a meeting with major polysilicon producers and the China Photovoltaic Industry Association to address monopoly risks and outline rectification requirements related to anti-monopoly compliance. The rectification measures are due to be submitted to the State Administration for Market Regulations (SAMR) by Jan. 20.

Under the proposed framework, companies are prohibited from reaching agreements on production capacity, utilization rates, sales volumes and pricing. Capital contribution ratios should not determine market allocation, output or profit distribution, and any form of coordination or communication on prices, costs, production and sale volumes is not allowed.

Meanwhile, high inventory levels and downstream oversupply remain a headwind, making it difficult to justify current price levels, sources said. One tier-1 producer noted that the cell and module segments are likely to remain challenging in 2026, noting that it is difficult to pinpoint a clear price ceiling amid ongoing policy uncertainty, while further price increases could also weigh on power plant investment decisions.

A developer source said uncertainty remains elevated, with any further price gains dependent on the market acceptance of current module prices. The source added that while suppliers continue to push for increases, it may be difficult for module prices to keep rising given current electricity tariffs, as most new PV projects are priced through market-based mechanisms rather than guaranteed feed-in tariffs (FiTs).

Major Chinese PV manufacturers are expected to release their financial results for 2025 in the coming weeks, with several already signalling another difficult year in 2025 amid oversupply across the value chain and persistently weak prices. Depressed module selling prices and tighter trade conditions have continued to squeeze margins, with some companies reporting wider losses in Q4 2025 versus Q3.

OPIS, a Dow Jones company, provides energy prices, news, data, and analysis on gasoline, diesel, jet fuel, LPG/NGL, coal, metals, and chemicals, as well as renewable fuels and environmental commodities. It acquired pricing data assets from Singapore Solar Exchange in 2022 and now publishes the OPIS APAC Solar Weekly Report.

‘An immediate transition to copper is technically and economically feasible’

23 January 2026 at 07:07

With silver prices rising, more large solar manufacturers are expected to switch to copper for cell metallization. Radovan Kopecek of ISC Konstanz tells pv magazine that he expects the entire industry to follow. Ning Song of the University of New South Wales says a small efficiency tradeoff may be acceptable if the cost savings are significant and do not introduce new reliability risks.

The recent surge in silver prices has eased slightly, with prices per troy ounce now just below the all-time high of over $94 per troy ounce reached earlier this week. Following announcements by Chinese module manufacturer Longi announced that it is moving toward copper-based metallization, and by China-based metallization paste supplier DK Electronic Materials that a gigawatt-scale customer will adopt its high-copper paste for commercial production, 2026 could mark a key milestone in the PV industry’s phase-down of the costly metal.

“I do think that the industry will follow in those footsteps, as the PV industry is a ‘follower industry.” When the big players start with something, the others follow,” Radovan Kopecek, the co-founder and director of German research institute the International Solar Energy Research Center Konstanz (ISC Konstanz), told pv magazine. “An immediate transition to copper is technically and economically feasible. Copper screen printing can be implemented quickly, and we have received many inquiries about it.”

Struggling with solar module pricing, supply risks, and complex procurement decisions?

Join us on Jan. 28 for pv magazine Webinar+ | The Solar Module Market Playbook: Managing pricing, risks, and other procurement challenges.

We combine real-time market data, case studies, and an interactive Q&A to help EPCs, developers, investors, and distributors secure high-quality PV modules at competitive prices, thereby safeguarding project bankability.

According to Kopecek, project developers are “absolutely” ready to embrace copper-metallized products, adding that when the technology is properly implemented, performance does not differ from that of silver-metallized modules. “However, I do not expect the industry to abandon silver completely,” he said. “Silver will remain at around 2 mg to 3 mg per watt, as it is still needed for firing through, as a diffusion barrier, and to establish contact with the emitter.”

Ning Song, from the University of New South Wales (UNSW) in Australia, explained that even if adopting a high-copper paste results in a small efficiency drop, the price trade-off should be acceptable to manufacturers. “That trade-off is acceptable if it does not introduce new reliability risks. Ultimately, the decision depends on how well the efficiency loss can be offset at the module and system level,” she told pv magazine.

Song's team is currently working to identify practical pathways to reduce silver usage in PV cells, both through incremental improvements to existing screen-printed metallization and longer-term exploration of alternative paste systems. “In the short term, aggressive silver thrifting within existing screen-printing processes is the most commercially ready option, as it minimizes disruption to current manufacturing lines,” she stated.

“From a purely technical perspective, the most promising long-term solution is the one that delivers the best combination of low contact resistance, minimal recombination losses at the contacts, high conductivity, sufficient ductility to enable narrow, well-shaped gridlines with reduced optical shading, and robust long-term reliability,” she said. “That is regardless of the specific metal used.”

❌